Incremental Test Case Generation for UML-RT Models Using Symbolic Execution

Eric James Rapos, Juergen Dingel
{eric,dingel}@cs.queensu.ca
Modeling & Analysis in Software Engineering Group
School of Computing

IP NSERC CRSNG

Motivation and Goals

The Iterative Nature of Model-Driven Development (MDD)

Understanding and Classifying the Effects of Model Evolution on Execution and Testing

Improving Efficiency of Test Case Generation Tools by Reducing Redundancy

Background

Real-Time Software Modeling (UML-RT)

Symbolic Execution of UML-RT State Machines

Process

Queen's University, Kingston, Ontario, Canada

Differencing Symbolic Execution Trees (SETs)

Initial Test Case Generation & Examination

Path Coverage Based Test Case Generation

Keep Test Cases That Are Not Effected by Differences (in green) – Remove Others

Incremental Generation of New Test Cases

Generate New Paths From Highest Difference (in purple)

Add Prefix (blue from Step 1) to New Paths to Generate Full Tests & Add to Final Test Suite

Evolution Steps

Three Main Areas of Focus: Additions, Modifications and Deletions

Looking at States, Transitions, Parameters, Attributes, Action Code, and Hierarchy

Having examples from each area for each artifact ensures a coverage of all logical evolution steps

Planned Work

Using Empirical Results,
Create a Set of Classifications
of the effects of Model
Evolution on Test Cases

Develop an Integrated
Plugin for Rational
Software Architect – RealTime Edition (RSA-RTE)

Use the Classifications of the Effects to Minimize the Need for Symbolic Execution

Resources

- .. [ZD12] K. Zurowska and J. Dingel. "Symbolic Execution of UML-RT State Machines". 27th ACM Symposium on Applied Computing, Track on Software Verification and Testing (SAC-SVT'12). Riva del Garda, Italy, March 25-29, 2012.
- 3. [UKB10] E. Uzuncaova, S. Khurshid, D. S. Batory, "Incremental Test Generation for Software Product Lines", IEEE Transactions 5. [FWPG07] B. Fluri, M. Wursch, M. Pinzger, H.C. Gall, "Change Distilling: Tree Differencing for Fine-Grained Source Code Change Extraction" IEEE Transactions on Software Engineering; 36(3): 309-322 (2010)
- 2. [ZD11] K. Zurowska and J. Dingel. "SAUML a Tool for Symbolic Analysis of UML-RT Models". Tool Demonstration Paper. 26th 4. [VPK04] W. Visser, C. S. Păsăreanu, S. Khurshid "Test input generation with java PathFinder", 2004 ACM SIGSOFT international 6. IBM Rational Software Architect Real-Time Edition (RSA-RTE) <a href="http://www-btt
- 7. Eclipse Modeling Framework (EMF) http://www.eclipse.org/modeling/emf/
- 8. Choco Constraint Solver http://choco.emn.fr/