
Model Clone Detector Evaluation
Using Mutation Analysis

Matthew Stephan

School of Computing, Queen’s University, Kingston, Canada
matthew.stephan@queensu.ca

Abstract—Model Clone Detection is a growing area within
the field of software model maintenance. New model clone
detection techniques and tools for different types of models are
being created, however, there is no clear way of objectively and
quantitatively evaluating and comparing them. In this paper, we
provide a synopsis of our work in devising and validating an
evaluation framework that uses Mutation Analysis to provide
such a facility. In order to demonstrate the framework’s feasibility
and also walk through its steps, we implement a framework
implementation for evaluating Simulink model clone detectors.
This includes a taxonomy of Simulink mutations, Simulink clone
report transformations, and more. We outline how the framework
calculates precision and recall, and do so on multiple Simulink
model clone detectors. In addition, we also discuss areas of
future work, including semantic clone mutations, and developing
framework implementations for other model types, like UML.
Lastly, we address some lessons we learned during the Ph.D.
process; such as partitioning the work into logical, self-contained,
milestones; and being open and willing to engage in other
research. We hope that our framework will help cultivate further
research gains in Model Clone Detection.

I. INTRODUCTION

Model Driven Engineering (MDE) is becoming increas-
ingly prevalent in the software engineering community, espe-
cially in embedded, communication, and automotive domains.
As software projects are built using model-based paradigms
and age and evolve, analysis of models becomes a crucial
step in MDE’s continued adoption and success. One type of
analysis that has been valuable for both maintenance [1], [2]
and evolution [3], is Model Clone Detection. Model Clone
Detection involves identifying similar model fragments within
a given context.

While the area of Model Clone Detection is experiencing
quite a bit of growth, including new innovations and model
types [4], one area that must be improved is the evaluation
of tools and approaches [5]. Specifically, as we encountered
during our early work evaluating a Simulink model clone
detector [5], it is difficult to quantitatively compare tools or
even refine a tool’s configurable settings.

In this paper, we provide a synopsis of our work completed
as part of a Ph.D. thesis [6] that contributes to the field of
Model Clone Detection by providing a framework for quan-
titatively evaluating model clone detectors by using Mutation
Analysis. This includes a description of the framework and a
prototype of the framework we built to work with Simulink
data-flow models. In addition, we outline future areas of
research we believe are viable, and also impart some lessons
we learned from our experiences.

Section II provides background and related work. Sec-
tion III gives a high-level overview of our framework. Sec-
tion IV discusses the Simulink mutations we created, while
Section V presents steps we took in implementing the evalu-
ation phase of framework for Simulink, the results of which
are presented in Section VI. Sections VII, VIII, and IX present
future work related to our research, lessons we learned along
the way, and our conclusions, respectively.

II. BACKGROUND AND RELATED WORK

In this section we provide background information on the
material we will be covering in this paper. We also mention
and compare work related to our research.

A. Model Clone Detection

Although a much newer area than its code-clone counter-
part [7], there are notable Model Clone Detection advance-
ments and approaches [4]. The most prevalent type of models
analyzed are Simulink data-flow models, however techniques
exist for general UML [8], State machines [9], and sequence
diagrams [10]. It is generally accepted that there are three types
of model clones [2]:

Type 1 - Exact Clones
Type 1, or exact, clones are identical except for
changes in position, colour, and other layout-
related aspects.

Type 2 - Renamed Clones
Type 2, or renamed, clones are the same allowing
for variation in both model element names and
values, and those properties of Type 1 clones.

Type 3 - Near-Miss Clones
Type 3, or near-miss, clones allow for structural
variation in addition to the differences accounted
for in Type 1 and 2 clones. This may include
additional or missing elements, changes in order,
and other structural changes. In addition, near-
miss clones are often associated with a similar-
ity/difference threshold that indicates how much
variation is allowed for a clone pair.

There exists Type 4, semantic, clones [11] that are struc-
turally different but semantically equivalent. This is a newer
idea, however, and has not yet been implemented in any model
clone detector. We discuss it later in Section VII.

Two Simulink model clone detectors able to detect these
types of clones are Simone [2] and ConQAT [12]. Simone pre-
processes the underlying textual representations of Simulink



models and detects near-miss Simulink clones up to a 30%
difference threshold. ConQAT is a graph-based approach that
flattens the Simulink system hierarchy and normalizes blocks
into meaningful labels. ConQAT uses heuristics to find the
largest common sub-graphs within Simulink models. There are
a few other Simulink model clone detectors [13], [14] however
they are less mature and unavailable.

B. Simulink

Simulink models include three levels of granularity: whole
models, (sub) systems, and blocks. Blocks are the basic
elements in Simulink and have a type and associated param-
eters that represent their semantics. They come from libraries
and are connected to other blocks via lines that represent
signals. Blocks are contained in systems and (sub) systems
are contained in model files or in other systems. Engineers
modify Simulink models using the Matlab environment. The
underlying textual representation of the models is in MDL
format, or XML format in the case of the latest version of
Simulink.

C. Mutation Analysis

Mutation Analysis entails evaluating software by mod-
ifying, or mutating, artifacts and seeing how the software
responds to these changes [15]. Mutation operators are used
to illustrate an important system property or emulate specific
future modifications to a system. Most work in Mutation
Analysis thus far modifies code to test various aspects of a
system. Often this includes evaluating the completeness of test
suites by injecting potential errors and observing how a test
suite covers them.

1) Model Mutation: Model Mutation Analysis is a new
sub-area within Mutation Analysis and involves model mu-
tations on model-driven systems. This includes state chart
mutations [16] and agent-based models [17]. There is some
work on Simulink Model Mutations [18], [19], [20] that
describes mutations intended to mutate a model’s run-time
properties. These mutations are focused on mutating the signal
carried between blocks on the wires rather than the structure
of a Simulink system. Our mutations are structural in nature
because model clones, thus far, relate to model structure
rather than semantics/signals. However, their mutations can be
classified using the taxonomy we describe later in this paper.

D. Code-Clone Detection Framework

Roy and Cordy [21] proposed a mutation-based approach
for comparing and evaluating source code clone detectors,
which they recently implemented [22]. We adapt the same
general idea for our work, however, the mutation operators
proposed for source code clones are based on code edits
that cannot be converted to model mutations. For example,
things like white space, comment changes, changes within
program lines, and others do not have a direct translation to
the modeling domain. In addition, they were not faced with
the model-/domain- specific challenges that we identify in
Section III.

III. OVERVIEW OF FRAMEWORK
We originally presented our framework in the New Ideas

and Emerging Results track at ICSE [23] and further developed
it in the thesis [6].

There are three main challenges to be addressed by the
framework [23]:

Determining Recall
Ascertaining if all the clones that should be de-
tected are detected.

Nested Clones
Tools may report only larger containing clones
rather than smaller, more identical, nested clones.
Comparing tools that report nested clones differ-
ently is an issue.

Clone Report Format
Model clone detectors return their results in vari-
ous forms. In order to analyze and compare tools,
a relatively consistent clone report form must be
obtained.

In this paper, we discuss the framework at a high level
as laid out in Figure 1. The specific details of how the three
challenges are addressed in the thesis [6] and our previous
work [23]. The first two stages comprise the Mutation phase.
The first step involves selecting the systems or models to
mutate, which can be performed manually or randomly. For
our Simulink implementation, we randomly selected a number
of systems given a specific model. Each system is copied so
it can be mutated and analyzed as a potential clone pair. For
our framework, we decided that it made the most sense to
duplicate the systems rather than inject the mutants directly
for two reasons: 1) Including the entire higher-level context
exacerbates the nested clone problem, and 2) injection into
a duplicated higher-level context does not make sense in a
modelling language such as Simulink because systems must be
connected. Also, copying and modifying a system is a much
more natural, copy-and-paste-like, operation, which mimics
actual model maintenance. The second step in the framework
involves mutating the systems. This can be done in different
ways, depending on the types of models being mutated. Ideally,
the mutations should be random in both the elements they
mutate and how they mutate. In our implementation, we run
each applicable mutation on each system being mutated.

The latter four chevrons in Figure 1 represent the Evalua-
tion phase. Each model clone detector and configuration that
one wants to evaluate must be run by the user on the systems
that have been mutated. This will result in clone reports that
likely will have to be transformed into a form conducive for
tool evaluation. This can be done through any number of
transformation methods, such as the one we used, TXL [24].
These transformed reports can be analyzed to assess recall and
precision, as we do for Simulink and discuss in Section V. The
last step in the framework involves presenting the results to the
user by showing both an overall view of the results, and more
detailed results for specific systems, including how well each
tool performed on those systems.

IV. SIMULINK MUTATIONS DEVELOPED FOR OUR
PROTOTYPE

In this section, we summarize the Simulink mutations we
created and employed in developing our Simulink implementa-
tion of the framework. We introduced, published, and validated
the Simulink mutation classes for injecting clones in the
International Workshop on Mutation Analysis [25]. Validation



Fig. 1. High Level Overview of Framework Process

TABLE I. SIMULINK MUTATION CLASSES [25]

Mutation Key Title Clone Type
mMLA Modification of Layout Attribute Type 1mRUE Reordering Underlying Elements
mRBL Renaming a Block or Line Type 2mCBV Changing a Block’s Value

mADBD Add or Delete Block as Destination

Type 3mADBS Add or Delete Block as Source
mCBT Changing a Block’s Type

mCSCH Changing a Subsystem’s Clone Hierarchy

was done through an evolution study. We then elaborated on
the class definitions and implemented corresponding mutation
operators in the thesis [6].

When creating our taxonomy of Simulink model mutations
for clone injection we wanted mutation classes that 1) injected
various types of clones and 2) were representative of how
an engineer would modify a Simulink system. Based on our
experience working with Simulink, writing a grammar for our
clone detector [2], and our discussions with Simulink users,
we came up with a classification. We present our classification
once more in Table I, which contains the title and key of each
mutation class and the type of model clone it injects. The full
details and implementations of the classes, including why the
clones injected are realistic and useful ones, can be found in
our corresponding paper [25] and thesis [6].

As shown, each type of model clone was accounted for
by the classes. In order to accomplish our second goal of
having mutation classes that are reflective of real Simulink edit
operations, we performed a model evolution study. Specifically,
we looked at three Simulink projects, two open-source and one
industrial, that had three or more versions each to see if all
the model edits across versions could be classified using our
taxonomy. Overall, the classes fit quite well with the observed
model evolution, with the only exceptions being unconnected
annotation or reference blocks. Details of this study can be
found in our paper and thesis.

V. FRAMEWORK EVALUATION PROCESS

This section describes the specific steps we took in order to
realize the Evaluation phase of the framework for our Simulink
implementation of it. More detailed descriptions and examples
can be found in the thesis [6].

A. Persisting Mutant Metadata

An important requirement of the framework is recording
the kind and location of the mutations that have been injected
into systems. In order to accomplish this in our Simulink
implementation we record this information in XML files. One
file is created for each System that is mutated and contains a
single “original” element and one-to-many “mutant” elements.
Both of these elements contain a subsystem attribute that
identifies the full path to the original subsystem or the one

that has been mutated, respectively. They both contain “block”
elements that have a “path” attribute that correspond to the
blocks within the systems and their respective paths. The
schema for these files can be found in the thesis.

B. Clone Report Transformation

After model clone detectors are run on the mutated sys-
tems, the clone reports are transformed to a standard format
so that they can be analyzed. In the case of our Simulink
prototype, our target clone report form was extended from
a format we came up with previously during a model clone
evolution study [3]. At a high level, it is an XML file that
contains “class” elements, representing clone classes, which
contain “source” elements representing clone instances within
each respective clone class. Each source element must con-
tain “block” elements, with their fully qualified paths as an
attribute, that correspond to the Simulink blocks within the
clone instance.

The Simone clone detector’s reports are made available
in both HTML and XML format, with or without the model
source, and with or without clone classes. The option closest
to what we require for our framework is the XML format, with
source, and with the clones sorted into classes. Thus, we wrote
a TXL transformation to convert Simone reports into a report
we could analyze and compare. This included extracting the
full path to each block from the models, something which was
not available in the original Simone reports.

ConQAT’s Simulink model clone reports are in XML
format and are made viewable through an HTML interface.
ConQAT reports clone classes, termed “finding-group”s; and
has each clone instance, or “finding”, contain its respective
Simulink blocks, which are represented as “qualified-name”
elements with path attributes. This format was much closer to
what we required for our framework, so we use a combination
of the Unix stream editor and Perl commands rather than TXL.

C. Recall and Precision Calculations

We briefly summarize how we implemented recall and
precision calculations through our framework. We omit some
details here for brevity, which can be found in the thesis.

1) Recall: All the Simulink model clone tools we en-
countered provide clone classes, but not all explicitly identify
clone pairs. So, for the Simulink framework implementation’s
recall calculation, we check if the original system and mutated
system belong to the same class. This is consistent with how
it is done in the code clone domain [21]. As formalized in
Equation 1, where M is the mutant and OS refers to the
original, unmutated, system; for each mutant metadata file,
we iterate through all mutant elements and check for their
coexistence with the SIS detailed in the original element in the
transformed clone report. This is done by investigating each
clone class reported by each specific tool or tool configuration.



We then calculate the total recall for a tool run by summing
all the mutants detected for all the SIS and divide that by all
the mutants injected, as shown formulaically in Equation 2. In
this case, MI refers to the mutants injected via the framework
implementation. We also explicitly list the mutants that were
missed for each specific system.

RecallM,OS =

{
1, if M&OS belong to same Clone Class;
0, Otherwise.

(1)

RecallToolRun =

SIS∑
i=1

∑MI(i)
j=1 RecallM(j),OS(i)∑

MI
(2)

2) Precision: Analogous to what is done in the code-clone
domain, we form model clone pairs from the constituents
within each model clone class and use that in the precision
calculation as the denominator. In order to validate the clone
pairs, we exploit the knowledge we have about the systems
being mutated and how they are being mutated. So, using
the block paths, we validate pairs that have only 30% or less
difference in the identified blocks, as we previously established
this as a reasonable difference threshold [2]. A key point to
remember here is that our model clone pair validator is not a
clone detector.

Once clone pairs have been validated, total precision can
then be calculated as the summation of all valid clone pairs
over all reported clone pairs across all systems, as demon-
strated in Equation 3.

PrecisionToolRun =

SIS∑
i=1

CP (i)valid
CP (i)reported

(3)

VI. SIMULINK FRAMEWORK IMPLEMENTATION RESULTS

This section presents our experiments with our framework
implementation for Simulink models. In this case we sum-
marize our findings and leave the detailed examples in the
thesis [6].

The mutation operators we implemented mutate randomly
each time. For example, we mutate a random block within
a system, add a block between two random blocks or as a
destination from a random line, delete a random block, et
cetera. As such, the models we select should not have too much
impact on the evaluation of tools. However, it is important to
see how the mutations effect different systems and systems of
varying sizes.

Table II displays information about the models we mutate
to demonstrate our prototype. The “Project” column indicates
what project the model belongs to, while the “Model” column
indicates what specific models were used. The PowerWindow
(PW) project is the automotive demonstration model set that
comes with Simulink. It has only one model, so we decided
to use two different versions of that. The Advanced Vehicle
Simulator (AVS) system is a large scale open-source Simulink
project1. For the AVS project, we decided to go with two of

1http://sourceforge.net/projects/adv-vehicle-sim/?source=dlp

TABLE II. MODELS MUTATED BY PROTOTYPE FOR TOOL
EVALUATION

Project Model # Systems Mutated # Mutations Injected

PW PowerWindow(V1) 7 83
PowerWindow(V3) 13 153

AVS fc KTH lib 12 146
lib fuel Cell 13 164

TABLE III. RESULTS OF CONQAT EVALUATION

Model Recall Precision
PowerWindow(V1) 33% 99%
PowerWindow(V3) 23% 100%

fc KTH lib 34% 100%
lib fuel Cell 35% 89%

the larger library models that seemed to contain rich systems.
The “# of Systems Mutated” column indicates the number of
randomly selected systems that we mutated. For our experi-
ments, we had our program select a dozen or so systems from
each model, if that many existed. We could have selected more,
however the key number is the amount of mutations injected,
which is listed in the “# of Mutations Injected” column. With
all but the first version of the original and relatively small
PowerWindow model, we ended up with roughly 150 random
mutations injected from 14 different mutation operators for
each model, for a total of 546 mutations.

A. ConQAT Results

Table III illustrates the evaluation of ConQAT’s handling
of our mutated models. It is very important to mention that the
way ConQAT is implemented at this time, it is only capable of
detecting type 1 and some type 2 clones. It would be possible
for them to eventually detect near-miss type 3 clones, as we
discussed in our initial evaluation paper [2]. While we were
aware of this early on, having this framework in place allows
us to actually quantify it. Because roughly two thirds of our
mutations are type 3, it is expected that ConQAT’s recall will
be about 33%.

B. Simone Results

1) Simone with Default Settings: Table IV presents the
analysis of Simone’s clone detection on the models from our
experiments using the default settings. Seeing as Simone is
intended to detect all three types of clones, one would hope
that it has relatively high recall. A number from the table that
immediately jumps out is the 77% precision in the lib fuel cell
model. We notice that there are a number of systems that were
randomly selected and mutated that had zero clones reported
by Simone, thus bringing down the recall significantly. One of
the tunable parameters within Simone is the minimum number
of source lines that must comprise a system in order for it to
be considered for clone detection. During our construction of
Simone and early experimentation, we decided that smaller
systems clones were likely trivial and not very prevalent in
larger systems. Whether or not it is appropriate to configure
the minimum number of lines to be lower for system clones,
which is more of a semantic question for engineers, the key
takeaway here is that the question arose because of metrics
reported by our framework prototype. So, after executing
our Simulink framework implementation on a specific set of
models, engineers can decide if they want to configure Simone
differently.



TABLE IV. RESULTS OF SIMONE EVALUATION

Model Recall Precision
PowerWindow(V1) 98% 100%
PowerWindow(V3) 99% 95%

fc KTH lib 97% 94%
lib fuel Cell 77% 97%

TABLE V. RESULTS OF SIMONE EVALUATION AT 20% DIFFERENCE

Model Recall Precision
PowerWindow(V1) 96% 100%
PowerWindow(V3) 96% 98%

fc KTH lib 94% 97%
lib fuel Cell 77% 98%

2) Simone with 20% Difference Threshold: While part of
our motivation in developing this framework was to provide a
facility to compare and contrast tools, we also wanted to allow
for tool developers to refine their own tools. As such, we use
our Simulink prototype to demonstrate this ability. We thought
it would be interesting to adjust the main parameter, the near-
miss difference threshold. Specifically, we restrict Simone by
configuring it to accept only 20% differences among systems
rather than the default 30%. The results are presented in
Table V and can be directly contrasted with Table IV. In
general, when something is more particular about what it takes
in, there is likely to be a decrease in recall and increase in
precision [26]. This holds true with our experiment in changing
Simone’s main parameter. Comparing the two tables, we see
a total drop of eight recall percentage points across all four
models and an increase of seven precision points.

VII. FUTURE WORK

In this section we discuss interesting areas of future work
and research questions that arose from our work.

A. Semantic Clones

As alluded to in Section II, Type 4 semantic model clones
for Simulink is a relatively unexplored area that could be
incorporated into our framework once more work is done on
it. Type 4 clones could be treated the same way as the rest of
the clones types in that they can be injected and validated for
recall and precision, respectively. A key difference however,
is that we would have to first do a search on the model, or
sets of models, to find a valid source model to mutate since
not all the semantic preserving transformations would work on
every system. This more aligns with the definition of a model
transformation than mutation, so this would require a dual
approach. It is definitely possible though, since even some of
the mutations we implemented thus far have some constraints
on the systems they operate on, for example, the deleting
a block in between mutation, changing a block’s value, and
changing a block’s type. However, our constraints are likely
not as complex as those involved in Type 4 clones would be.

B. Other Types of Models

Aside from choosing Simulink because it was of interest to
our industrial partners, we also focused on it because Simulink
model clone detection was far and away the most mature type
of model clone detection. There have been attempts at other
model types, however there are not many tools for these model

types, rather, most model types have a single approach at this
time.

We attempted to make the framework as generic as pos-
sible. In terms of mutation, the same process would apply to
any model type once an appropriate granularity was selected
as the focus of the mutations. So, perhaps, for UML structural
models, each class diagram could be considered a system.
Multiple class diagrams would be duplicated, mutated, and
organized similarly. The evaluation aspects would remain the
same.

For coming up with mutations, each type of model would
require clear and consistent definitions of each type of clone.
In general, it is likely that all models would share some notion
of exact, Type 1, clones and near-miss, Type 3, clones. Type
2 may not be as evident, as not all model elements have
values, or identifying and/or unique names. Once clone types
are realized by tool researchers, an initial mutation list can
be devised to inject clones and validated by means of doing
a similar evolution experiment to ensure the mutations are
realistic and cover any cases found in available model sets.

The process we took for calculating precision and recall
in our prototype can be employed for any type of model.
The key, as it was for us, would be to have some clone
report format that can allow an evaluation tool to determine
fragment containment and clone-pair validity. So clone-report
transformation may be required for other model types, as it
was for us.

C. Refining Precision and Clone Pair Validation

Similar to what was done in the code-clone tool evaluation
approach [21], we created a model clone validation process
for model clone pairs. However, validation in the modeling
domain was slightly more complex. Rather than just comparing
text similarity of reported clones, we had to determine how to
validate two Simulink systems. Considering the only consistent
information reported across tools, albeit not always explicitly,
was block paths, we had to use those. This works since we are
aware of the systems we are working with and the nature of the
mutations occurring. That being said, this validation technique
is not perfect and is a weakness of the approach currently.
It would be better if we could devise some heuristic that is
not clone detection, but could traverse the models quickly to
validate a clone pair thus using structure, including block type,
rather than qualified block paths.

VIII. LESSONS LEARNED

There are two main lessons we have based on our experi-
ences.

One thing that worked very well for us during the Ph.D.
process was that we were able to partition the overall goal of
our research into logical, and self contained, deliverables. This
was beneficial as we could validate and publish each step along
the way, which gave us the confidence required to continue. So,
for example, our background was published as survey papers,
our overview was published in an early achievements track,
and our mutation classes were published and validated in an
apt venue. This is a valuable skill to work on and hone during
the process.



Secondly, students should be open and willing to engage
in other research that comes up as a side effect of their main
research. This will help diversify their portfolio and may help
lead their research in directions that were not even imagined
before. In our case, we did some side work on the evolution
of model clones that resulted in one paper [3] and others that
we are working on currently. The key skill developed in doing
this was being able to see beyond the immediate boundaries
of our research.

IX. CONCLUSION

In order to advance the research in Model Clone De-
tection, there must be a way to quantitatively evaluate and
compare model clone detectors. In this paper, we provided a
synopsis of our research that attempts to achieve that through
a framework that uses Mutation Analysis. After introducing
the unique challenges that the framework must address, we
provided a high-level overview of the framework’s process
including the mutation and evaluation phases. We describe
our Simulink model mutations that inject all the various types
of model clones and represent realistic Simulink evolution.
Our implementation of the framework for Simulink involved
persisting mutant metadata; transforming clone reports for
two tools; and calculating recall and precision by analyzing
clone classes and validating clone pairs, respectively. We run
experiments on Simone and ConQAT using four models and
546 mutations, and discover that ConQAT kills roughly one
third of the mutations while Simone kills almost all of them.
The precision of both tools is quite high.

Future work involves accounting for semantic clones by
using model transformations in the framework in conjunction
with mutations, developing framework implementations for
other types of models once model clone detection research
advances for those types, and refining our precision/clone pair
validation approach by using graph traversal instead of paths.
The two lessons we have for future students are to split up their
work into self contained, ideally publishable, components;
and to be open and willing to engage in secondary research
and projects that come up. With our framework in place, we
hope that future model clone detector researches will use it to
evaluate and refine their tools in hopes of improving the field
as a whole.

ACKNOWLEDGMENT

Thank you to my supervisor, James R. Cordy, for all
his assistance and advice. Thanks to Andrew Stevenson for
all his help with the TXL transformations and model clone
report transformations. This work is supported by NSERC,
the Natural Sciences and Engineering Research Council of
Canada, as part of the NECSIS Automotive Partnership with
General Motors, IBM Canada, and Malina Software Corp.

REFERENCES

[1] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, and B. Schaetz,
“Model clone detection in practice,” in International Workshop on
Software Clones (IWSC), 2010, pp. 57–64.

[2] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,
“Models are code too: Near-miss clone detection for Simulink models,”
in ICSM, 2012, pp. 295–304.

[3] M. Stephan, M. H. Alalfi, J. R. Cordy, and A. Stevenson, “Evolution
of model clones in simulink,” in Models 2013 - Models and Evolution,
2013, pp. 38–47.

[4] M. Stephan and J. R. Cordy, “A survey of model comparison approaches
and applications,” in MODELSWARD, 2013.

[5] M. Stephan, M. Alafi, A. Stevenson, and J. Cordy, “Towards quali-
tative comparison of simulink model clone detection approaches,” in
International Workshop on Software Clones (IWSC), 2012, pp. 84–85.

[6] M. Stephan, “A mutation analysis based model clone detector evaluation
framework,” Ph.D. dissertation, Queen’s University, 2014.

[7] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s University, Tech. Rep. 2007-541, 2007.

[8] H. Storrle, “Towards clone detection in uml domain models,” in
European Conference on Software Architecture (ECSA): Companion
Volume, 2010, pp. 285–293.

[9] J. Chen, T. Dean, and M. H. Alalfi, “Clone detection in matlab stateflow
models,” in International Workshop of Software Clones, 2014, pp. 1–10,
to appear.

[10] E. P. Antony, M. H. Alalfi, and J. R. Cordy, “An approach to clone
detection in behavioural models,” in Working Conference on Reverse
Engineering 2013, 2013, pp. 472–476.

[11] B. Al-Batran, B. Schatz, and B. Hummel, “Semantic clone detection
for model-based development of embedded systems,” Model Driven
Engineering Languages and Systems, pp. 258–272, 2011.

[12] F. Deissenboeck, B. Hummel, E. Juergens, B. Schaetz, S. Wagner, J.-F.
Girard, and S. Teuchart, “Clone detection in automotive model-based
development,” in ICSE, 2009, pp. 603–612.

[13] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and T. Nguyen,
“Complete and accurate clone detection in graph-based models,” in
International Conference on Software Engineering (ICSE), 2009, pp.
276–286.

[14] H. Petersen, “Clone detection in Matlab Simulink models,” Master’s
thesis, Technical University of Denmark, 2012, iMM-M. Sc.-2012-02,
2012.

[15] A. Acree, T. Budd, R. DeMillo, R. Lipton, and F. Sayward, “Mutation
analysis,” DTIC Document, Tech. Rep., 1979.

[16] M. Trakhtenbrot, “Implementation-oriented mutation testing of state-
chart models,” in International Conference on Software Testing, Verifi-
cation, and Validation Workshops (ICSTW), 2010, pp. 120–125.

[17] S. F. Adra and P. McMinn, “Mutation operators for agent-based mod-
els,” in International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW), 2010, pp. 151–156.

[18] Y. Zhan and J. Clark, “Search-based mutation testing for Simulink
models,” in Genetic and Evolutionary Computation Conference, 2005,
pp. 1061–1068.

[19] N. He, P. Rümmer, and D. Kroening, “Test-case generation for em-
bedded simulink via formal concept analysis,” in Design Automation
Conference (DAC), 2011, pp. 224–229.

[20] R. F. Araujo, A. M. R. Vincenzi, F. Delebecque, J. C. Maldonado,
and M. E. Delamaro, “Devising mutant operators for dynamic systems
models by applying the HAZOP study,” in ICSEA 2011, 2011, pp. 58–
64.

[21] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic
framework for evaluating code clone detection tools,” in International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2009, pp. 157–166.

[22] J. Svajlenko, C. K. Roy, and J. R. Cordy, “A mutation analysis
based benchmarking framework for clone detectors,” in International
Workshop on Software Clones (IWSC), 2013, pp. 8–9.

[23] M. Stephan, M. Alafi, A. Stevenson, and J. Cordy, “Using mutation
analysis for a model-clone detector comparison framework,” in ICSE,
2013, pp. 1277–1280.

[24] J. Cordy, “The TXL source transformation language,” Science of Com-
puter Programming, vol. 61, no. 3, pp. 190–210, 2006.

[25] M. Stephan, M. Alalfi, and J. R. Cordy, “Towards a taxonomy for
simulink model mutations,” in International Conference on Software
Testing, Verification, and Validation 2014 (ICST) – Mutation Workshop,
2014, pp. 206–215.

[26] M. K. Buckland and F. C. Gey, “The relationship between recall and
precision,” JASIS, vol. 45, no. 1, pp. 12–19, 1994.


