
Model-Driven Evaluation of Software Architecture
Quality Using Model Clone Detection

Matthew Stephan
Department of Computer Science and Software Engineering

Miami University
Oxford, Ohio, USA

Email: stephamd@miamioh.edu

James R. Cordy
School of Computing

Queen’s University
Kingston, Ontario, Canada

Email: cordy@cs.queensu.ca

Abstract—As software architecture methods and tools become
increasingly model-driven, evaluating architecture artifacts must
adjust correspondingly. Model-driven evaluation of architecture
quality has advantages over traditional evaluation techniques,
especially when applied in a model-driven context. One approach
we found successful in performing model-driven analysis involves
using model clone detection, whereby we detect subsystems that
are similar to example systems that are positive and negative
quality indicators. In this paper we present our ideas on applying
model clone detection to realize model-driven evaluation of
software architectures, which contain many high-level systems
and interactions. We propose having model-based representations
of architectural patterns and styles, and employing model clone
detection to identify positive and negative architectural aspects
for evaluation, including reliability and security. We provide
our insights on how this research can be applied to popular
architectural paradigms, relation to previous work, and present
discussion points on how it will impact software architecture
quality evaluation.

I. INTRODUCTION

As the software engineering field and technology mature,
software systems grow more complex and larger in size. Cor-
respondingly, the software architectures defining these systems
are becoming more complex. This complexity causes chal-
lenges both in the design of this architecture and the evaluation
of its quality throughout the software life cycle. Seeing as
architectural design is more abstract than detailed design or
implementation, one technique used in many domains to com-
bat this complexity is model-driven architecture (MDA) [1]–
[3]. Pure MDA projects use a variety of high-level abstractions,
known as models, and combine these models at design time
to perform model execution, verification, and code generation
for embedding onto platforms [3]. However, even architects
not following a pure MDA approach likely use some higher-
level modeling notation to represent their architectures [4],
such as using the unified modeling language (UML) to define
architectures [5], or even higher-level architecture description
languages (ADL) [6].

Evaluating architectures is a well-researched problem with
many approaches [7] considering different factors such as
reliability, security, maintainability, portability, modularity, and
others [8]. For example, most approaches employ a scenario-
based technique [7], whereby scenarios emulate activities
the architecture should support [9]. Important issues facing

existing software architecture evaluation techniques include
incorporating them into existing development processes and
providing tool support [7]. These techniques require relatively
low-level abstractions compared to the architecture models
themselves, such as textual formalisms, or require using a
new modelling language. In many cases they entail manual
evaluation steps, for example, continually developing scenarios
and calculating each scenario’s impact and weighting [8].

An emerging approach to evaluating software architecture
quality is model-driven evaluation, which uses higher-level
models to analyze architectures. One form of model analysis
yet to be leveraged for this purpose is near-miss model clone
detection, which involves finding identical or similar sets of
models, up to a given specified difference threshold [10],
[11]. Since software architecture patterns and styles can be
viewed as “a family of systems in terms of a pattern of
structural organization” [12], and the presence of architecture
patterns and styles can be employed to measure architecture
quality [13], including reliability and security concerns, model
clone detection is an ideal candidate to realize model-driven
quality evaluation.

One automatic approach we devised, implemented, and
validated for model-driven quality evaluation of stand-alone
models and subsystems was to use model clone detection
to identify instances of individual systems that were similar
to established “good” or “bad” examples, known as pattern
models [14]. Using an approach featuring model clone de-
tection allows for a completely model-driven evaluation since
analysts define and use pattern models that are compared to the
models being analyzed [15]. It requires no additional textual
or modeling formalisations. A key limitation of our past work
is that it was designed and implemented to function at the
stand-alone (sub)system level only, that is, in the context of
individual systems and their constituents, such as individual
Simulink systems [14]. Software architecture, on the other
hand, is more high level than individual systems and is a
composition of design decisions [16] typically represented as a
model that defines elements, form, and rationale [4]. It consists
of different views and sets of interconnected models [17]. So
while individual systems work with what Buschmann termed
“stand-alone patterns” [18], software architecture patterns are
higher-level and focus more on interconnections and higher-



level concerns. This presents a challenge in that our previous
work in its current state is ill suited to handle these concerns
and complex connections.

In this position paper, we propose using model clone detec-
tion for semi-automatic model-driven evaluation of software
architectures. Specifically, we propose that analysts detect
quality indicators in an example-driven manner whereby ar-
chitectural patterns/styles are represented as examples in the
same modeling language notation(s) as the architecture imple-
mentations themselves. These example, or “family”, models
then undergo model clone detection with the systems being
analysed, and any clone matches can be used to reason about
architecture quality. One merit of this technique is that it
is general enough that various types of architectural aspects
can be evaluated at once by having the family models repre-
sent security, maintainability, reliability, performance, confor-
mance, and other concerns. Additionally, even as architecture
instances evolve, the evaluation can take place. Lastly, using
this technique provides the same benefits we noted for stand-
alone system evaluation including [15] (1) quality and risk
assessment early in a project’s existence, (2) applicability to
projects and teams employing either a pure- or part- MDA
philosophy, and (3) no textual or new modeling languages
being required.

This position paper begins in Section II with some back-
ground on model clone detection and architectural patterns
and styles. We then overview the process in Section III and
provide our insights on how it can be realized for popular
architectural paradigms in Section IV. We present related work
in Section V and points for discussion in Section VI, followed
by our conclusion in Section VII.

II. BACKGROUND

A. Model Clone Detection

A software clone is an element of software that is similar
or identical to another element. Traditionally, clone research
has focused on the notion of “code clones”, which refers to
clones in textual code representations [19]. More recently,
techniques are being developed for model clone detection,
whereby analysis focuses on finding identical or similar model
elements or sets of elements [10]. The majority of research
thus far has focused on Simulink [10], [11], but work is being
done on other modeling formalisms like UML [20], [21] and
Stateflow [22]. Model clone detection approaches can employ
different methods for comparison including graph-based tech-
niques, textual analysis of the models’ representations, or a
variety of heuristic approaches [23]. These model clone detec-
tion approaches have been validated and proven to be effective
through experimentation, and industrial validation [10], [21],
[24].

There are four types of model clones [11]. A type 1 model
clone pair represents two models that are completely identical,
ignoring any formatting or layout information. Type 2 model
clones are models that are structurally identical to one another
but allow for renamed elements or changed element values.
Type 3 model clones, or near-miss model clones, are pairs/sets

of models that are similar up to a certain similarity threshold,
such as 75% structural similarity. Type 4 model clone pairs
are those are significantly different structurally, beyond a Type
3 threshold, but are semantically equivalent. More technical
details on model clone detection can be found in our previous
work and others [10], [11], [21].

1) Model Clone Detection as an Evaluation Tool: In recent
work, we described how model clone detection can be used
as an evaluation tool for stand-alone systems [15]. Utilizing
“cross clones” [25], we suggested having analysts run model
clone detection on the union of their systems and sets of
“pattern” models, representing either established good or bad
solutions. Any model clones that cross these sets indicate
that an individual system is an instance of that pattern. This
is made possible through the detection of Type 3 model
clones. We implemented and validated this approach in a
tool for analyzing Simulink systems by detecting instances
of antipatterns [14]. This tool is able to detect five different
types of antipatterns in Simulink model sets, demonstrating
that structure is enough to identify potential pattern instances.
In this position paper, we propose adapting this work to cater
it towards software architecture quality analysis, addressing
architectural-specific aspects and features.

B. Architectural Patterns and Styles

One of the requirements of our proposed approach is there
must be descriptions/examples of architecture that represent
some notion of either a “good” or “bad” way of doing things.
Fortunately, this is fairly prevalent for software architecture in
the form of software architecture patterns [13], [18]. These
software architecture patterns are architectural solutions to
commonly occurring questions or problems. They can be
incorporated into software architecture design and develop-
ment approaches and, when it comes to quality, Harrison and
Avgeriou speak explicitly to the idea that architectural patterns
can be used to satisfy and measure architectural quality as-
pects [13]. There are examples in the literature of concurrency
patterns [18], [26], [27], scalability patterns [18], context-
processing middleware patterns [28], usability patterns [29],
and more.

A synonymous term to architecture patterns is software
architectural styles, where an architectural style “abstracts
elements and formal aspects from various specific architec-
tures” [30]. For example, there are architectural styles that
address GUI construction [31] and network-based system
layouts [32]. Architectural styles can be formalized [33] and
there is even tool support for performing architectural style-
centered creation [34].

III. OVERVIEW OF PROPOSED PROCESS

Since an architectural pattern/style can be viewed as “a
family of systems in terms of a pattern of structural organiza-
tion” [12], and the presence of these can be used to measure
quality [13] it is the goal of our process to ascertain if a spe-
cific architecture undergoing quality evaluation belongs to that
“family of systems.” Thus, we can employ Type 3 (near-miss)



model clone detection with an tuned similarity threshold to see
if each specific architectural instance is structurally similar to
an architecture “family model” that is both representative of
that family and is in the same form as the architecture itself.
Software architecture syntax/structure dictates and defines the
semantics since the syntactic domain maps to the semantic
domain [33], so any model clones containing a “family model”
will demonstrate similar positive or negative quality indicators.

The general process involves three stages, which we adapt
from our earlier work [15].

A. Stage 1: Creating Architecture Style/Pattern Family Models

The first step involves defining the family models that will
be the basis of comparison. This is a manual step that needs
to be performed only once.

This stage in the process can include having analysts consult
a domain expert, conduct domain analysis, and incrementally
refine the family models through experimentation. The family
models must be created by the system analyst using the same
modeling language/tools used to create the architecture models
that are to be analyzed later. For example, in our previous
work involving stand-alone Simulink models [14], we created
family models in Simulink by leveraging existing research on
cataloging patterns, adapting standards from advisory boards,
and utilizing company specific sources, like domain experts
and documentation. Sources such as these are likely to exist
and be viable for architectural modeling languages, in addition
to other sources.

The family models must be general enough such that they
can be matched to any potential implemented candidates, that
is, facilitate high recall. This is especially important as many
patterns are configurable or have many variation points. The
family models must not be too general, however, so as to
not impact the precision of the matches. The family models’
definitions should be completed and tweaked by analysts, do-
main experts, and researchers. This step is the main challenge
in adapting our existing work as software architectures are
very abstract high-level end-to-end representations, focusing
on multiple systems, and having an emphasis on organization
and interconnections, which contrasts our previous work that
focuses on individual systems and stand-alone patterns.

In Section IV we discuss the feasibility of creating family
models for popular architectural representations.

B. Stage 2: Model Clone Analysis

The second stage involves running model clone detection on
the union of the family models created in the first stage and
the architecture models being analyzed. This step is automated
in that all this work and analysis is performed by the clone
detector once it is setup. The only manual aspect is developing
a suitable model clone detector, which needs to be done only
once.

A key prerequisite of this proposed evaluation approach is
that there exists a model clone detector for the architectural
models/formalisms being used. New model clone detection

techniques and tools can be realized using a variety of ap-
proaches, and in our previous work we outlined the steps
we took in creating a text-based model clone detector [11],
SIMONE. These steps included 1) creating a grammar to
represent the modeling language describing the models and
their structural information, as SIMONE is parser-based and
language-sensitive, and 2) normalizing the underlying mod-
eling representations through a combination of filtering and
sorting. To apply this same approach to allow for model clone
analysis of any of the architectural languages we describe in
this paper, both of these steps will be important and can be
achieved through domain analysis, speaking to experts, and
refinement. Seeing as these architectural languages describe
structural information and aspects, we believe that using
textual analysis is sufficient, especially if we build it on the
same framework as SIMONE was built on. Whatever model
clone detector approach is used, a fairly large (around 33-
50%) Type-3 difference threshold will be necessary to find
instances of design patterns in order to allow for a lot of pattern
variations.

After development of a model clone detector and creation of
the family models, this stage is automatic and can occur at any
time after the architectures to be analyzed have been created
or designed. Thus, if the family models exist before the project
begins, analysts can perform early model-driven evaluation
of their architectures and continue to do so throughout the
software life cycle simply by executing model clone detection.
Execution entails running model clone detection on the union
of the family models and architectures models being analyzed
for quality, which is passed as input to the next stage:
reasoning about software architecture quality.

In Section IV, we postulate about using or creating model
clone detectors for the chosen architectural representations
based on our experiences.

C. Stage 3: Reasoning about Software Architecture Quality

After model clone detection analysis is complete, archi-
tecture quality analysts can identify the model clones of
pattern family models in the system architectures under study.
Identifying cross clones is automatic as many clone detection
tools can explicitly indicate cross clones [14], [25].

Once cross clones are identified automatically, analysts
are made aware which systems under study are instances of
which design patterns or antipatterns. Each architectural model
cross clone, illustrated as the “X” in Figure 1, represents
a categorization of that system’s architecture as an instance
of the architectural pattern/style family. In other words, we
are looking for architectural model clone pairs that intersect
between the set of pattern family models and the system
architectures being evaluated. Tools like SIMONE identify
intersections automatically [11].

At this point, analysts can record all identified instances and
begin to draw qualitative and quantitative quality conclusions.
For example, Harrison and Avgeriou [13] indicate positive and
negative quality implications of various architectural pattern
usages. For each pattern and quality aspect, they assign a



Fig. 1. Identification of Architectural Model Cross Clones

TABLE I
EXAMPLE OF QUANTITATIVE QUALITY VALUES FOR PATTERNS

Pattern Security Reliability Efficiency Portability
Layers +2 +1 -1 +1

Pipes & Filters -1 -2 +1 +2
Blackboard -1 0 -1 0

label of “Key Strength”, “Strength”, “Neutral”, “Liability”, or
“Key Liability”. As we demonstrate in Table I, we can ascribe
quantitative values to these labels based on their findings.
For example, having a range of values from “Key Strength”
equaling two to “Key Liability” equaling negative two. So,
if we were to detect an instance of the Blackboard pattern
in a project, then we ascribe a -1 score to security and
efficiency, with no impact on reliability or portability. If we
find architectural instances of the Layers pattern, then we give
security a +2 and reliability +1. Other example quality aspects
that we can consider including are usability, maintainability,
and implementability [13].

A nice aspect to this approach is that the analysis can
be compositional. That is, it should be possible to assess
quality attributes of an architecture based on the assessment
of its parts, facilitating both a high-level composite quanti-
tative score to present to decision makers, and a low-level
detailed score for system developers and engineers. From a
traceability perspective, the score sources themselves can be
linked directly to the systems exhibiting the relevant qualities
as the cross clone information will include the location of the
architectural models demonstrating the properties.

There are other sources of quality implications of patterns
that can be used to create quantitative measures such as these,
including work by Shaw and Garlan [12]. However, this is
an emerging area that will grow as the field of software
architecture quality research matures.

IV. APPLICABILITY TO POPULAR ARCHITECTURAL
LANGUAGES

In order to consider the plausibility of using model clone
detection for model-driven software architecture quality eval-
uation, we consider the three most widely used software
architectural languages. In 2013, Malavolta et al. performed
an industrial survey on ADL use and understanding [6].
When asked which ADLs they use, 86% of the participants
said they use UML, 16.3% said they use the Architecture

Analysis & Design Language (AADL) [35], and 11.63% use
ArchiMate [36].

A. UML

The most widely used tool for describing software architec-
ture is UML. UML can describe multiple software architecture
views through different modeling representations. For exam-
ple, UML Component diagrams can be used for a code archi-
tecture view, UML Package diagrams for module architecture
views, and UML Class diagrams with stereotypes along with
UML State or Sequence diagrams for execution architecture
views [5]. Furthermore, UML 2 added model concepts that
improve the ability to represent architectures [37].

Regarding the plausibility of Stage 1, creating family mod-
els for UML, architectural patterns and styles for UML are
often represented as the general form of models themselves.
In the simple case, the UML architectural pattern will be
a single generalized model in a specific type of diagram,
such as a Component diagram. This can be instantiated as
a family model and will be a Type 3 model clone to anything
similar. In other scenarios, there may be multiple diagram
types that, together, best identify the pattern. It would be
prudent for the family models to include all the corresponding
diagrams to increase the precision of the pattern identification,
thus improving the quality analysis. This is especially true in
the case of UML 2.0 since the connectors allow for many
variations of architectural element representations [37]. Thus,
using Type 3 model clones can be used in conjunction with a
refined and validated set of family models.

Take, for example, the Reactor Software Architecture Pat-
tern [26], which handles server requests concurrently to make
projects better suited to multi-threading and modular develop-
ment. It can be described through a UML Component diagram,
such as the one in Figure 2 showing the internal components
of the Logging Implementation and its relation to external
components. It also has an associated UML Class diagram
and UML Sequence diagram, which we omit. All three of
these diagrams should be represented as family models and
associated together in order to best identify instances of the
Reactor Pattern.

From a model clone analysis perspective for Stage 2,
there exists model clone detectors for UML. The MQlone
tool [21] detects UML model clones through a combination of
graph analysis and UML-specific heuristics, such as element
names and indexes. There is also a model clone detector
specifically for UML behavioral models [20] that uses the
models’ underlying textual representations. Because UML
profiles are prevented from breaking the UML semantics and
structural rules, these model clone detection techniques can
either account or be updated to account for any UML profiles
in a specific domain or company. In the simple case of having
a single type of UML diagram, model clone detection can
be used as per usual. In the more complex case of having
multiple UML diagram types together form the architectural
pattern or style, the model clone detector would have to be
aware of this. While this capability does not yet exist, we



Fig. 2. UML Component Diagram for Reactor Architectural Pattern [18]

see two potential extensions to model clone detectors that
can accomplish it. (1) In the case that the components in
the architectural implementations are explicitly linked [5],
the family models can be annotated in such a way that
they are associated with one another and the model clone
detector would use that information to report only potential
instances where all, or the majority of, the linked diagrams
have a clone to that family model group. (2) A more general
extension is to have the model clone detector pre-process
both the family models and architecture implementations being
analyzed. Specifically, the detector could combine the family
model group of diagrams into one diagram/representation and
compare that against the combination, or cross product, of
all of the relevant implemented architectural diagrams being
analyzed. So, for example, the Reactor architecture family
model group from earlier would have a Component, Class,
and Sequence diagram. These three would be combined into
one family model and compared against all combinations of
Component, Class, and Sequence diagrams implemented in
the architectures being analyzed. This would obviously be
more computationally intensive, however, it would be a much
more general and applicable approach. One that would be
computationally feasible if we were to use the underlying
textual representations of these diagrams instead of doing
graph matching [11].

B. AADL

An important feature of the AADL is that it is both a
graphical and textual modelling language [35]. For example,
take the architectural style of having “mutually informing com-
ponents” [38] facilitating increased dependability by having
components determine their and their partners’ modes. It can
be generalized in AADL graphical form, as shown in Figure 3
demonstrating two identical sub-components and their various
modes. There is also an AADL textual model representation
of this architectural style [38], which we omit.

For Stage 1 of our proposed process, creating the family
models for AADL would involve instantiating the AADL
graphical and/or textual model defining the architectural pat-
tern or style. While AADL models can represent components
at different levels of abstraction, they are all the same diagram
type and adhere to the same meta model/grammar. They can
be defined textually, graphically, or in a combination of the

Fig. 3. AADL Model for Mutually Informing Components [38]

two [35]. So, the choice between graphical versus textual
representation of the family models would correspond to both
the representation of the AADL architecture models being
analyzed and the AADL architectural pattern/style definition
models. If the models to analyze used only graphical or textual
representations, then the family models would need contain
only graphical or textual elements, respectively.

From a model clone detection, Stage 2, perspective, there
are no tools to our knowledge that detect model clones in
AADL. However, because AADL models have textual repre-
sentations, it is likely that one could develop an AADL textual
model clone detector the same way we created a model clone
detector for Simulink [11]. This is what we will do if we
choose to implement this process for AADL.

C. ArchiMate

ArchiMate is an ADL modeling language specifically tar-
geted towards modeling enterprise architecture [36]. It in-
cludes a set of meta models accounting for various levels
of architecture abstraction including, in order of specificity,
domain models, dynamic systems, enterprise architectures,
and project-level concepts. ArchiMate accounts for business,
applications, and technology all within one language [36].

Stage 1 family models intended to work with ArchiMate
languages would need to be created using the target ArchiMate
tool implementation used to design the architectures being
analyzed. Because ArchiMate models have many inter-domain
relationships, the family models would need to capture that



Fig. 4. ArchiMate Mid-Office Architecture Pattern [39]

behavior from associated styles and patterns. Take for example
the Mid-Office Architectural Pattern [39] in Figure 4. It
provides a unified external view to clients while a system is
transitioning to a service-oriented architecture from a tradi-
tional back-office one. It has other patterns nested within it,
including the Document Management and Business Process
Engine elements, so the family models would need to include
the lower level elements as well.

Seeing as ArchiMate has various tools implementing its
language, the model clone detection analysis necessary for
Stage 2 of our proposed process would depend on the specific
ArchiMate tool. In cases where only the graphical represen-
tation was available, then graph-based model clone detection
would be the direction to take. If the textual representation
was also available for analysis, than a text-based model clone
detection approach could be employed. Since “each level
inherits the concepts from the previous level, while also
providing specialisations of the existing concepts” [36], the
grammar/syntactic comparison would need to account for all
concepts from all meta levels in the scope. Applying and
extending the work we have done for SIMONE would likely
allow us to create a model clone detector for ArchiMate tools,
assuming that the specification of the textual representation is
available.

V. RELATED WORK

There are many techniques for evaluating software architec-
ture [7], [8]. These are often geared towards specific quality
attributes such as modifiability, design suitability, reliabil-
ity, security, flexibility, and others [7]. The most popular
evaluation approach uses scenarios that describe cases and
forms that the architecture must account for and take, respec-
tively [9]. All crucial uses of a system are covered by the
scenarios, allowing analysts to monitor scenario interactions
and reactions. As we presented in this paper, architectural
quality evaluation can also be model-driven. Some examples

include performance models [40], [41], consistency checking
through analysis graphs [42], pattern instance detection using
logic reasoners [43], and non-functional analysis through
formal models [44]. In these examples, and others, analysts
are required to learn and use a new modelling language or
formalism, and cater their analysis to specific quality aspects.
This contrasts the technique we propose in that analysts can
use the same modeling language(s) that their architectures
are described in and, as long as the quality aspects can be
modelled in an example driven-manner, analysts can evaluate
different architectural quality aspects, including reliability and
security.

Zhu et al. extract information from established patterns
to help an architect make and evaluate decisions in their
domain [45]. This work contrasts ours in that it does not
perform analysis directly on the architecture models, but
rather helps in the forward engineering direction. However, the
information they extract from patterns can definitely be useful
when drawing conclusions about the pattern instances detected
through our process. Similarly, Reference Architectures are
generic architectures with associated quality benefits for engi-
neers to use when designing their systems [46]. It is possible
to leverage some of these reference architectures as sources
of patterns. Kim [47] devised a meta-modeling approach to
specify patterns. While our proposed family models are based
directly on the style and pattern models, it is possible that the
family models can be enhanced by adding information from
the meta models.

VI. DISCUSSION POINTS AND FUTURE WORK

Using model clone detection for architecture quality evalu-
ation is widely applicable in that various types of modelling
quality measures and properties can be defined as pattern
family models. From a familiarity and learning perspective,
it has the advantage that analysts can specify desired architec-
tural properties directly as examples in the same modelling
formalism as the architectures to be evaluated. Using and
extending existing model clone detectors should reduce the
amount of additional scientific work required to realize Stage 2
in our proposed process for the various ADLs. We would likely
leverage our existing work on SIMONE, while exploiting
various grammar inference techniques [48] to analyze the
structural information described by these ADLs. We are quite
confident that we would be able to find clones in these domains
based on the success we and others have had in achieving
model clone detection. Some of these architecture models may
have many elements and lots of potential combinations of
structure. However, we believe that employing an approach
using the same textual analyzer that we built our tool to detect
Simulink patterns on will counter this nicely, as it sufficiently
considers structural information described in the respective
modeling languages, avoids the sub-graph isomorphism prob-
lem [11], and is built upon a very efficient and tested text
clone analyzer [49].

The correlation between patterns and quality has been
discussed by Harrison and Avgeriou [13] specifically for ar-



chitecture patterns and by many others for software in general
including traditional programming code domains [50], [51].
However, the exact correlation between patterns and quality
is not clear. While Harrison and Avgeriou provide labels for
the impact of a pattern on its various quality aspects that
we proposed converting numerically earlier in Table I, an
important area of future work is to better define how “good” or
“bad” various architecture patterns are and to validate this in
regards to overall architecture quality. Another quality factor
to consider is looking at the context of the architecture pattern
to help assess its impact to system quality on the whole. For
example, “crucial” systems showcasing architecture patterns
would have greater implications than instances found in less
crucial systems. Of course, quality is relative to the business
context. As we presented in our table, the decision to use a
pattern or the remedying of an antipattern will likely have trade
offs. But it is important to remember that our proposed process
will only identify potential pattern instances and provide
some automated quality insights. It is not meant, at least at
this point, to automatically refactor the architectural models.
While an overall quality assessment may be difficult, even the
compositional evaluation will have value in itself and can lead
to a suggested overall quality assessment based on various
aspects of the architecture, such as security, maintainability,
and reliability. It may be easier and more useful to focus on
antipatterns because an architecture that matches a bad pattern
is bad, whereas, it may be difficult to conclude anything from
a partial match with good patterns.

Through this proposed process, architecture quality can be
checked continually throughout the software’s lifetime despite
architectural evolution. This can ensure conformance during a
project to help with architectural management. Traceability is
enhanced as analysts can track styles or patterns occurrences
over time and the impact on overall quality. This is an
improvement over the current practice, whereby a recent study
showed that architecture design decisions are often mistaken
and rarely documented [52].

This process, once realized and implemented, is semi-
automatic. While Stage 1: the creation of family models,
is a one-time manual process, it is theoretically possible to
automate it through the notion of pattern inference. This is
separate research area [53], and one that would enrich the
model-driven evaluation of architectures, but is not critical.
The second stage, model clone analysis, is an automatic
process. The reasoning stage, or Stage 3, is done semi-
automatically, as cross clones can be identified by the tools and
quantitative scoring can be programmed and automated. On
the other hand, qualitative assessments and decisions would be
manual. A long term goal would be to incorporate automatic
or guided refactoring based on the analysis, as done in other
domains [54].

A notable limitation of this process is that there must be
examples of styles or patterns for models to emulate. While
each domain and industry can develop them, it is not always
the case that this information is shared with the community as
a whole. Also, tweaking the family models to achieve a desired

measure of recall and precision is challenging. Typically
because “correct” instances would have to be verified manually
by an expert. We may have to start with a large difference
threshold, like 50%, and refine the models incrementally. In
addition, there is the possibility that architects may deliberately
have anti-patterns, thus, this approach would lead to false
alarms. However, since this is simply an analysis process,
refactoring these architectures is something that can be left
as a decision for project stakeholders.

Our first step will be to focus on a particular domain,
decided on by gauging the industrial and academic commu-
nities to see what is interesting and feasible. We will then
determine if it is possible to extract useful architectural struc-
tures that represent instances of positive or negative qualities
based on the literature and domain experts. Once we have
completed implementing this proposed process for the decided
architectural language, an important aspect of work involves
evaluating and validating its merits. This includes determining
if a variety of architectural aspects can be evaluated, likely by
calculating recall and precision of pattern instance detection
for the various types architecture patterns. It should be clear
if an implementation of the process will allow early project
evaluation as we would test it on architectures representing
projects at various levels of detail and maturity.

VII. CONCLUSION

In this position paper we presented an approach for model-
driven evaluation of software architecture quality that uses
model clone detection by having example architectures asso-
ciated with quality measures and properties as the basis for
comparison. In addition to being completely model-driven,
a key benefit is that analysts need not use any modeling
formalisms other than the ones they use already in their
architecture designs and implementations. We presented our
ideas on how the process would work for three popular
architecture description languages, including examples based
on our experiences and the literature. We believe this work
has much promise in the area of software architecture quality
because its ability to assess various quality aspects, help
analysts understand their systems better, and its capability of
having evaluation performed any time during the software life
cycle.

ACKNOWLEDGMENT

This work is supported in part by the Natural Sciences
and Engineering Research Council of Canada, as part of the
NECSIS Automotive Partnership with General Motors, IBM
Canada, and Malina Software Corp.

REFERENCES

[1] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “Model-driven architec-
ture,” in Advances in Object-Oriented Information Systems. Springer,
2002, pp. 290–297.

[2] A. G. Kleppe, J. Warmer, and W. Bast, MDA explained: The model
driven architecture: practice and promise. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, 2003.

[3] S. J. Mellor, MDA distilled: principles of model-driven architecture.
Addison-Wesley Professional, 2004.

[4] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software architecture:
foundations, theory, and practice. Wiley Publishing, 2009.



[5] C. Hofmeister, R. L. Nord, and D. Soni, “Describing software architec-
ture with UML,” in Software Architecture. Springer, 1999, pp. 145–159.

[6] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” Transactions on
Software Engineering, vol. 39, no. 6, pp. 869–891, 2013.

[7] M. A. Babar, L. Zhu, and R. Jeffery, “A framework for classifying
and comparing software architecture evaluation methods,” in Australian
Software Engineering Conference. IEEE, 2004, pp. 309–318.

[8] L. Dobrica and E. Niemelä, “A survey on software architecture analysis
methods,” Transactions on Software Engineering, vol. 28, no. 7, pp.
638–653, 2002.

[9] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based
analysis of software architecture,” Software, vol. 13, no. 6, pp. 47–55,
1996.

[10] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J.-F.
Girard, and S. Teuchert, “Clone detection in automotive model-based
development,” in International Conference on Software Engineering,
2008, pp. 603–612.

[11] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,
“Models are code too: Near-miss clone detection for Simulink models,”
in International Conference on Software Maintenance, 2012, pp. 295–
304.

[12] M. Shaw and D. Garlan, Software architecture: perspectives on an
emerging discipline. Prentice Hall Englewood Cliffs, 1996, vol. 1.

[13] N. B. Harrison and P. Avgeriou, “Leveraging architecture patterns to
satisfy quality attributes,” in Software Architecture. Springer, 2007, pp.
263–270.

[14] M. Stephan and J. R. Cordy, “Identification of Simulink Model Antipat-
tern Instances using Model Clone Detection,” in International Confer-
ence on Model Driven Engineering Languages and Systems, 2015, pp.
276 – 285.

[15] ——, “Identifying Instances of Model Design Patterns and Antipatterns
Using Model Clone Detection,” in International Workshop on Modeling
in Software Engineering, 2015, pp. 48 – 53.

[16] J. Bosch, “Software architecture: The next step,” in Software architec-
ture. Springer, 2004, pp. 194–199.

[17] P. Avgeriou and U. Zdun, “Architectural patterns revisited–a pattern,” in
European Conference on Pattern Languages of Programs, 2005.

[18] F. Buschmann, K. Henney, and D. Schimdt, Pattern-oriented Software
Architecture: On Patterns and Pattern Language. John wiley & sons,
2007, vol. 5.

[19] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[20] E. Antony, M. H. Alalfi, and J. R. Cordy, “An Approach to Clone
Detection in Behavioural Models,” in International Working Conference
in Reverse Engineering, 2013, pp. 472–476.

[21] H. Störrle, “Towards clone detection in UML domain models,” Software
& Systems Modeling, vol. 12, no. 2, pp. 307–329, 2013.

[22] T. R. Dean, J. Chen, and M. H. Alalfi, “Clone detection in Matlab
Stateflow models,” Electronic Communications of the EASST, vol. 63,
2014.

[23] M. Stephan and J. R. Cordy, “A survey of model comparison approaches
and applications,” in International Conference on Model-Driven Engi-
neering and Software Development, 2013, pp. 265–277.

[24] M. Stephan, “A mutation analysis based model clone detector evaluation
framework,” Ph.D. dissertation, Queen’s University, 2014.

[25] J. R. Cordy and C. K. Roy, “Debcheck: Efficient checking for open
source code clones in software systems,” in International Conference
on Program Comprehension, 2011, pp. 217–218.

[26] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture, Patterns for Concurrent and Networked Objects.
John Wiley & Sons, 2013, vol. 2.

[27] R. Mzid, C. Mraidha, J.-P. Babau, and M. Abid, “SRMP: a software
pattern for deadlocks prevention inreal-time concurrency models,” in
International Conference on Quality of Software Architectures, 2014,
pp. 139–144.

[28] R. Rouvoy, D. Conan, and L. Seinturier, “Software architecture patterns
for a context-processing middleware framework,” Distributed Systems
Online, vol. 9, no. 6, pp. 1–1, 2008.

[29] E. Folmer and J. Bosch, “Usability patterns in software architecture,”
in International Conference on Human-Computer Interaction, 2003, pp.
93–97.

[30] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp.
40–52, 1992.

[31] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr, J. E.
Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow, “A component-and
message-based architectural style for GUI software,” Transactions on
Software Engineering, vol. 22, no. 6, pp. 390–406, 1996.

[32] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[33] G. D. Abowd, R. Allen, and D. Garlan, “Formalizing style to under-
stand descriptions of software architecture,” Transactions on Software
Engineering and Methodology, vol. 4, no. 4, pp. 319–364, 1995.

[34] B. Schmerl and D. Garlan, “Acmestudio: Supporting style-centered
architecture development,” in International Conference on Software
Engineering. IEEE, 2004, pp. 704–705.

[35] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis
& design language (AADL): An introduction,” DTIC Document, Tech.
Rep., 2006.

[36] M. M. Lankhorst, H. A. Proper, and H. Jonkers, “The architecture of the
Archimate language,” in Enterprise, Business-Process and Information
Systems Modeling. Springer, 2009, pp. 367–380.

[37] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Lit-
tle, Documenting software architectures: views and beyond. Pearson
Education, 2002.

[38] P. Feiler and A. Rugina, “Dependability modeling with the architecture
analysis & design language (AADL),” DTIC Document, Tech. Rep.,
2007.

[39] M. Iacob, M. Lankhorst, and A. Schrier, “Patterns for agility,” in Agile
Service Development. Springer, 2012, pp. 95–110.

[40] A. Brunnert, K. Wischer, and H. Krcmar, “Using architecture-level
performance models as resource profiles for enterprise applications,”
in International Conference on the Quality of Software-Architecturess,
2014, pp. 53–62.

[41] G. A. Moreno and P. Merson, “Model-driven performance analysis,”
in International Conference on the Quality of Software-Architectures.
Springer, 2008, pp. 135–151.

[42] M. Biehl and W. Löwe, “Automated architecture consistency checking
for model driven software development,” in Architectures for Adaptive
Software Systems. Springer, 2009, pp. 36–51.

[43] G. Luitel, M. Stephan, and D. Inclezan, “Model level design pattern
instance detection using answer set programming,” in International
Workshop on Modeling in Software Engineering, 2016, pp. 13–19.

[44] L. Berardinelli, P. Langer, and T. Mayerhofer, “Combining fUML and
profiles for non-functional analysis based on model execution traces,”
in International Conference on Quality of Software Architectures, 2013,
pp. 79–88.

[45] L. Zhu, M. A. Babar, and R. Jeffery, “Mining patterns to support soft-
ware architecture evaluation,” in Working IEEE Conference on Software
Architecture. IEEE, 2004, pp. 25–34.

[46] S. Angelov, P. Grefen, and D. Greefhorst, “A framework for analysis and
design of software reference architectures,” Information and Software
Technology, vol. 54, no. 4, pp. 417–431, 2012.

[47] D.-K. Kim, “A meta-modeling approach to specifying patterns,” Ph.D.
dissertation, Colorado State University, 2004.

[48] A. Stevenson and J. R. Cordy, “Grammatical inference in software
engineering: an overview of the state of the art,” in Software Language
Engineering. Springer, 2012, pp. 204–223.

[49] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in International Conference on Software Maintenance
and Evolution, 2015, pp. 131–140.

[50] B. Huston, “The effects of design pattern application on metric scores,”
Journal of Systems and Software, vol. 58, no. 3, pp. 261–269, 2001.

[51] E. Van Emden and L. Moonen, “Java quality assurance by detecting code
smells,” in Working Conference on Reverse Engineering 2002, 2002, pp.
97–106.

[52] Z. Durdik and R. Reussner, “On the appropriate rationale for using
design patterns and pattern documentation,” in International Conference
on Quality of software architectures. ACM, 2013, pp. 107–116.

[53] P. Tonella and G. Antoniol, “Object oriented design pattern inference,”
in Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE Interna-
tional Conference on. IEEE, 1999, pp. 230–238.

[54] M. O. Cinnéide, “Automated application of design patterns: a refactoring
approach,” Ph.D. dissertation, Trinity College, 2001.


