
Towards a Cognizant Virtual Software Modeling
Assistant using Model Clones

Matthew Stephan
Department of Computer Science & Software Engineering, Miami University, Oxford, Ohio, USA

stephamd@miamioh.edu

Abstract—We present our new ideas on taking the first steps
towards cultivating synergy between model-driven engineering
(MDE), machine learning, and software clones. Specifically, we
describe our vision in realizing a cognizant virtual software
modeling assistant that uses the latter two to improve software
design and MDE. Software engineering has benefited greatly
from knowledge-based cognizant source code completion and
assistance, but MDE has few and limited analogous capabilities.
We outline our research directions by describing our vision
for a prototype assistant that provides suggestions to modelers
performing model creation or extension in the form of 1) complete
models for insertion or guidance, and 2) granular single-step
operations. These suggestions are derived by detecting clones of
the in-progress model and existing domain, organizational, and
exemplar models. We overview our envisioned workflow between
modeler and assistant, and, using Simulink as an example,
illustrate different manifestations including multiple overlays
with percentages and employing variant elements.

Index Terms—model driven engineering, model clones, model
clone detection, machine learning, software modeling

I. INTRODUCTION

Model-driven engineering (MDE) is a software development
approach employing high level formal abstractions as first
class artifacts [1]. There is notable adoption of MDE in
industry [2], the research community, and education. Due
to a variety of social, organizational, and technical factors,
there is still much room for innovation and increased model
quality [2], despite the demonstrable benefits and success
stories of those employing MDE.

Cognification is one way that has enhanced software de-
velopment. For example, machine learning (ML) techniques
are used by software engineers employing traditional code-
based approaches to estimate development effort [3] and assist
with coding [4]. Analogous techniques have yet to be signifi-
cantly exploited in MDE. As pointed out at the ”2017 Grand
Challenges in Modelling” workshop, this inadequacy in the
state-of-the-art must be addressed by the software community
in order to support adoption and evolution of MDE [5]. One
aspect of cognification we believe to be especially promising
and valuable is the notion of a modeling bot, which can
act as a virtual software modeling assistant. By comparing
developers’ incomplete models to similar domain models and
exemplars, it can assist them by identifying inconsistencies
and recommending additions or changes [5].

In this paper, we describe our vision for this research direc-
tion by describing our approach involving a virtual assistant

This material is based upon work supported by the National Science
Foundation under Grant No. 1849632 .

that analyzes an incomplete model/system undergoing devel-
opment by looking for similar models in the form of type 3,
near-miss, clones [6] from the same project/organization, same
domain, and best practice exemplars, and provides suggestions
based on those models. We establish the impact and value
of this innovation by contrasting it with current practice, and
then present our new ideas involving how to achieve synergy
between MDE, ML, and software clones.

II. RELATED WORK

Techniques for assisting with traditional source code de-
velopment have been successfully implemented by research
and industry alike. Proksch et al. [4], Raychev et al. [7],
and Asaduzzaman et al. [8] are notable examples that use
Bayesian networks, language-based techniques, and method
call and call site contexts, respectively. A popular example of
code completion is Eclipse’s code recommender system, which
suggests code based on API usage statistics. All of these are
successful examples to draw inspiration from for our vision.

We discuss the state-of-the-art in model assistance to posi-
tion our ideas, and demonstrate their pertinence and potential
impact. Dyck et al. provided suggestions on how a UML
model recommender should appear based on a UML tools
survey [9]. Segura et al. created an assistant for modeling
language meta model development by querying textual data,
such as XML and RDF [10], which is different than our
task of model development, as is the data being queried.
Sen et al. [11], Mazanek et al. [12], Pati et al. [13], and
Steinmann and Ulke [14] all employ meta model modeling
language/grammar analysis to compute suggested potential
model modifications. All of this model-completion research
differs from our directions and approach in that our virtual
modeling assistant makes suggestions based on knowledge
derived from existing models. This includes the work most
related to ours, providing auto-completion suggestions based
on UML activity patterns [15]. It uses past editing operations
to identify completion opportunities, whereas our approach
identifies opportunities based on structurally similar models.

The most closely related concept in industry is the 2018a
version of Matlab Simulink, which contains a new feature that
performs proprietary model clone detection to facilitate reuse
and library replacement1. While this method also employs
model clone detection, it is explicitly for refactoring completed
Simulink models. Our envisioned technique is intended for

1 https://www.mathworks.com/help/slcheck/ug/
identify-subsystem-clones-and-replace-them-with-library-blocks.html

https://www.mathworks.com/help/slcheck/ug/identify-subsystem-clones-and-replace-them-with-library-blocks.html
https://www.mathworks.com/help/slcheck/ug/identify-subsystem-clones-and-replace-them-with-library-blocks.html


use in model creation and editing incomplete models (model
fragments), which is a different activity. Additionally, their
similarity detection algorithm is both proprietary and is limited
to having ”different block parameter values” only. Thus, many
Type 3 clones [6], such as those having additional blocks or
models using different types of blocks, will not be identified
using their built-in tool.

III. RESEARCH VISION

To describe our new research idea and direction at a high
level, we overview our envisioned approach by describing the
general work flow of a modeler in conjunction with the process
followed by a virtual software modeling assistant using model
clone detection. We summarize this in Figure 1. The process
begins with a modeler creating a new model or working on
an existing incomplete model. They either explicitly ask the
virtual modeling assistant for suggestions or, ideally, the sug-
gestions appear in their modeling environment automatically
and relatively unobtrusively. The virtual modeling assistant
analyzes the incomplete model, X, and attempts to find similar
models, Y, based on using near-miss model clone detection on
its knowledge base. The knowledge base is formed from mod-
els from the same project and organization, the same domain,
and best practice exemplars. An important consideration and
challenge is questioning where the models for the latter two
of these sources will come from and if they will be sufficient.
With the increasing prevalence of MDE [2], we believe model
repositories, such as MDEForge [16] and the Lindholmen
Dataset [17], company internal repositories, and popular open
source repositories that contain models, such as GitHub and
SourceForge, will continue to cultivate a rise in available
model artifacts. Once the modeling assistant determines the
set of similar models, Y, it analyzes Y to determine what
suggestions to provide the modeler. Based on inspiration from
analogous code completion research [4], [18], we will base
this on prevalence statistics, user rankings/input to help avoid
perpetuating poor modeling practices, and context analysis.
Lastly, the modeling assistant presents suggestions in a form
conducive to the modeler. We have two different ideas for
the nature of these suggestions which is the focus of the
next section: having an virtual modeling assistant suggest
1) a complete model, for guidance or direct insertion; or 2)
granular, single operation, suggestions.

A. Technical Details and Prototype

To illustrate our vision and the directions we envision this
research taking, we outline our proposed prototype employing
the synergy among MDE, ML, and software clones: the
Simulink Virtual Modeling Assistant (SimVMA). SimVMA
will guide Simulink developers in their native Simulink envi-
ronment as they create and extend their models. We focus on
Simulink as it has the most mature techniques for model clone
detection [19] and is quite popular and growing in automotive,
aerospace, and many other embedded domains. Additionally,
modelers often create their Simulink models in a modular and
structured fashion. However, the framework and technologies

we develop in this work will not be Simulink-specific and
should be generalizable to other model types. We specifically
plan on using the Simone model clone detector [6] developed
by Alalfi et al. According to evaluations [20], Simone is 1)
the most adept Simulink clone detector for detecting type
3 near-miss clones, which are similar models according to
a specific similarity definition, and 2) capable of handling
large model collections very efficiently. Simone measures
model similarity accurately, and is able to tackle various
model comparison challenges including similar elements with
different names [19]. To realize our vision initially, we will
define and create different and independent capabilities for
SimVMA, which we now overview in the two sections that
follow.

1) Suggesting Entire Models/Systems: One capability is
having SimVMA analyze an incomplete system being worked
on by a modeler, and presenting similar systems that they
can import/clone, as a whole, into their workspace for editing.
We demonstrate this in our mock-up in Figure 2 whereby the
model on the left represents a system in progress, and, after
the modeler asks SimVMA for recommendations, SimVMA
presents the two model systems on the right. The modeler
could then either click on one those models to auto-complete
their incomplete model, or keep them displayed for inspiration.
These example models are completed power window models
from the Simulink demonstration set2. This ability to insert
entire systems in place of an incomplete system is useful as it
is analogous to snippet matching in source code [21]. It differs
from the state-of-the-art since it will detect clone system
suggestions with different block types and additional/deleted
blocks (Type 3) instead of just different parameters, and can
be used for model completion/extension instead of library
extraction.

2) Single Operation Suggestions: This direction of our
research vision involves us realizing a modeling assistant
that provides step-wise suggestions to modelers, similar to
Eclipse’s code recommender, that are based on ML and
software clones. Specifically, SimVMA will analyze model
set Y to provide user suggestions and rank them based on
their prediction confidence. Using frequency as an example,
25% of systems from Y did A, 15% did B, 10% did C,
and so on. A, B, and C will be some form of model
modification. In ML and reasoning terms, all model clones
will be considered the knowledge base, and the current model
and its potential additions/edits will be the data undergoing
prediction. When it comes to model completion suggestions,
past research analyzing industrial and open-source Simulink
model repositories and edit histories indicate suggestions will
belong to one of eight modifications classes [22] identified by
Stephan et al. Using Bruch’s [18] information categories to
avoid common biases, we will employ edit operation frequency
as the number of occurrences of a model element in similar
models. Additionally, we will allow for weighted rankings of
model sources in the knowledge base as a user-configuration
2 https://www.mathworks.com/help/simulink/ug/
power-window-example-case-study.html

https://www.mathworks.com/help/simulink/ug/power-window-example-case-study.html
https://www.mathworks.com/help/simulink/ug/power-window-example-case-study.html


Fig. 1. Proposed Workflow of Modeler and Virtual Modeling Assistant

Fig. 2. SimVMA Whole Model/System Suggestion

option of the modeling assistant. For example, a modeler
can specify they favour best practice exemplar model clones
over project/organization model clones and model clones from
the same domain. This should help avoid perpetuating poor
modeling practices. We will also consider context information
in our data processing and predictions. That is, our approach
will assign higher weights/ranking to operations that come
from model clones that have a higher similarity value (less
difference) to a model than those with lower similarity values
(more different), which aligns with Bruch’s matching neigh-
bour information concept [18]. This capability is useful for
both model creation and existing-model editing, and can also
be applied by a modeler after using our entire model insertion
capability.

One avenue we envision is overlaying various sugges-
tions directly onto the modeler’s system in the Simulink
modeling environment through scripts. Specifically, as pic-
tured in our manually-created example in Figure 3, we will
present different options in different colours with the per-
centages displayed adjacently. These percentages represent
how often these elements/suggestions appeared in similar
models. So, in this example, the modeler has created and
connected three systems, driver switch; passenger switch; and
the power window control system, and asks SimVMA how
they could proceed. SimVMA presents three annotated op-
tions through the modeling interface, sorted vertically by
ranking/percentage confidence. The modeler can select one

Fig. 3. SimVMA Single-Step Suggestions with Percentages

of the options, triggering SimVMA to connect the existing
system to the selected option automatically. The modeler can
also disregard the suggestions if they feel none of them are
applicable to their needs.

Another option we foresee is using Simulink variability
blocks. Continuing our example, SimVMA can add all three
blocks to a Simulink Variant subsystem 3. A Simulink Variant
subsystem encapsulates multiple implementations of a sub-
system, which can include a single block or more. Only one
implementation is active during model execution, which is
selected by a modeler programmatically (textually) or at the
modeling level. As we demonstrate in Figure 4, the SimVMA
suggestion will appear as a single variant block connected

3 https://www.mathworks.com/help/simulink/examples/variant-subsystems.
html

https://www.mathworks.com/help/simulink/examples/variant-subsystems.html
https://www.mathworks.com/help/simulink/examples/variant-subsystems.html


Fig. 4. SimVMA Variant Subsystem Alternative

to the incomplete model. The ”SimVMA Suggested Variant
Subsystem” will contain internally the three block suggestions
shown in Figure 3, ranked in the same way and annotated with
the same percentage confidences. One consideration for this
option is the possibility of having many Variant subsystems
causing an increase in complexity.

IV. DISCUSSIONS AND CONCLUSION

This research adds value and disrupts current software en-
gineering modeling practice by providing cognitive assistance
to modelers that will result in an improvement in software
modeling analysis and software model quality. As per source
code assistance, this quality improvement will stem from our
use of instance prevalence, user ranking/input, and context
analysis. Our research directions will allow modelers to lever-
age past experiences and established models/elements to use
in their own development. By providing them this assistance
and information, they can make more informed decisions, thus
providing society higher quality, more secure, and reliable
software. Additional specific impact stemming from this vision
and research includes 1) experiments incorporating the tool
into educational settings to help teach students modeling based
on suggestions; 2) supporting other modeling languages and
environments, like UML or the Eclipse Modeling Frame-
work; 3) user studies and interface assessment experiments
to evaluate and improve the virtual modeling assistant user
experience; and 4) supporting larger scale batch operation
suggestions to modelers instead of either single operation or
whole-model insertion, which might help provide additional
contextual information to modelers, even for single-step edits.

In this paper, we have presented our new ideas and visions
for a virtual modeling assistant that employs a synergy among
MDE, ML, and software clones that can help modelers cre-
ate high quality software models. Specifically, our proposed
approach analyzes modelers’ incomplete models and finds
similar ones using model clone detection on the intersection
of their incomplete models and a knowledge base consisting
of models from the same project/organization, same domain,
and exemplars. The modeling assistant analyzes these model
clones to provide either step-wise guidance or entire model
examples to modelers. This differs from the state-of-the-art in
that it is not based on language syntax/grammars and is meant
to be used during model creation and editing, instead of during
refactoring. It is our hope this paper helps accelerate future
research on cognifying model-driven software engineering to
improve software quality through guided software modeling.

Considering our research directions are at an early-stage, we
welcome and look forward to feedback from the community
as we embark on making this vision a reality.

REFERENCES

[1] S. Kent, “Model driven engineering,” in Integrated formal methods.
Springer, 2002, pp. 286–298.

[2] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-driven engineer-
ing practices in industry: Social, organizational and managerial factors
that lead to success or failure,” Science of Computer Programming,
vol. 89, pp. 144–161, 2014.

[3] K. Srinivasan and D. Fisher, “Machine learning approaches to estimating
software development effort,” TSE, vol. 21, no. 2, pp. 126–137, 1995.

[4] S. Proksch, J. Lerch, and M. Mezini, “Intelligent code completion with
bayesian networks,” TOSEM, vol. 25, no. 1, p. 3, 2015.

[5] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard, “Cognifying model-
driven software engineering,” in Federation of International Conferences
on Software Technologies: Applications and Foundations. Springer,
2017, pp. 154–160.

[6] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,
“Models are code too: Near-miss clone detection for simulink models,”
in International Conference on Software Maintenance, 2012, pp. 295–
304.

[7] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Conference on Programming Language Design and
Implementation. New York, NY, USA: ACM, 2014, pp. 419–428.

[8] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Cscc:
Simple, efficient, context sensitive code completion,” in International
Conference on Software Maintenance and Evolution, 2014, pp. 71–80.

[9] A. Dyck, A. Ganser, and H. Lichter, “A framework for model recom-
menders requirements, architecture and tool support,” in International
Conference on Model-Driven Engineering and Software Development,
2014, pp. 282–290.

[10] Á. M. Segura, A. Pescador, J. de Lara, and M. Wimmer, “An extensible
meta-modelling assistant,” in International Enterprise Distributed Object
Computing Conference, 2016, pp. 1–10.

[11] S. Sen, B. Baudry, and H. Vangheluwe, “Towards domain-specific model
editors with automatic model completion,” Simulation, vol. 86, no. 2,
pp. 109–126, 2010.

[12] S. Mazanek, S. Maier, and M. Minas, “Auto-completion for diagram
editors based on graph grammars,” in IEEE Symposium on Visual
Languages and Human-Centric Computing. IEEE, 2008, pp. 242–245.

[13] T. Pati, D. C. Feiock, and J. H. Hill, “Proactive modeling: auto-
generating models from their semantics and constraints,” in Workshop
on Domain-specific modeling. ACM, 2012, pp. 7–12.

[14] F. Steimann and B. Ulke, “Generic model assist,” in MODELS.
Springer, 2013, pp. 18–34.

[15] T. Kuschke, P. Mäder, and P. Rempel, “Recommending auto-completions
for software modeling activities,” in MODELS, 2013, pp. 170–186.

[16] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino,
and A. Pierantonio, “MDEForge: an Extensible Web-Based Modeling
Platform,” in International Workshop on Model-Driven Engineering on
and for the Cloud, 2014, pp. 66–75.

[17] R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for open source projects that use uml: mining
github,” in MODELS. ACM, 2016, pp. 173–183.

[18] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in Joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, 2009, pp. 213–222.

[19] M. Stephan and J. R. Cordy, “A survey of model comparison approaches
and applications.” in International Conference on Model-Driven Engi-
neering and Software Development, 2013, pp. 265–277.

[20] ——, “MuMonDE: A framework for evaluating model clone detectors
using model mutation analysis,” Software Testing, Verification and
Reliability, p. e1669, 2018.

[21] D. Wightman, Z. Ye, J. Brandt, and R. Vertegaal, “Snipmatch: using
source code context to enhance snippet retrieval and parameterization,”
in Symposium on User interface software and technology, 2012, pp.
219–228.

[22] M. Stephan, M. Alalfi, and J. R. Cordy, “Towards a taxonomy for
simulink model mutations,” in International Workshop on Mutation
Analysis, 2014, pp. 206–215.


	Introduction
	Related Work
	Research Vision
	Technical Details and Prototype
	Suggesting Entire Models/Systems
	Single Operation Suggestions


	Discussions and Conclusion
	References

