
Using Mutation Analysis for a
Model-Clone Detector Comparison Framework

Matthew Stephan Manar H. Alafi Andrew Stevenson James R. Cordy

School of Computing, Queen’s University, Kingston, Canada
{stephan,alafi,stevenson,cordy}@cs.queensu.ca

Abstract—Model-clone detection is a relatively new area and
there are a number of different approaches in the literature. As
the area continues to mature, it becomes necessary to evaluate
and compare these approaches and validate new ones that are
introduced. We present a mutation-analysis based model-clone
detection framework that attempts to automate and standard-
ize the process of comparing multiple Simulink model-clone
detection tools or variations of the same tool. By having such
a framework, new research directions in the area of model-
clone detection can be facilitated as the framework can be
used to validate new techniques as they arise. We begin by
presenting challenges unique to model-clone tool comparison
including recall calculation, the nature of the clones, and the
clone report representation. We propose our framework, which
we believe addresses these challenges. This is followed by a
presentation of the mutation operators that we plan to inject
into our Simulink models that will introduce variations of all
the different model clone types that can then be searched for by
each respective model-clone detector.

I. INTRODUCTION

Model-Driven Engineering (MDE) is fairly prevalent in
Software Engineering and has seen substantial adoption in
the recent past. This can be witnessed in communications,
automotive, and other embedded software areas. As projects
created through MDE begin to age and continually grow, the
necessity of detecting model clones becomes more important.
Model-clone detection, a relatively new research area, involves
finding sets of software models that are identical or similar
to one another with respect to some measure of similarity.
The results from model-clone detection can be used to reduce
redundancy, aid in system understanding and refactoring, and
identify similar system components after error detection. Thus,
it is of great interest to many in the Software Engineering
community including our industrial partners. There are a num-
ber of approaches created that perform model-clone detection,
however it is not clear which approach is best suited to what
situations and how to evaluate individual tools. As such, there
is a need for a standard way of comparing different model-
clone detectors or the same detector using different tuning
parameters. Having a facility to do this will help fuel research
in this area as it will provide researchers a means with which
they can try out and validate new techniques.

In previous work we have presented some initial ideas
for performing a qualitative evaluation of Simulink model-
clone detection approaches [1, 2], motivated by our desire to
compare our new model-clone detection approach to existing

tools. While we are able to perform some basic qualitative
analysis and find differences in the clones detected by each
tool, we still are faced with a number of challenges: recall
computation; the different nature of the clones reported; and
the different representations of the resulting clone classes and
instances provided by each of the tools. These challenges are
elaborated in Section III-A.

In this paper we propose using mutation analysis in com-
bination with a representation transformation step to devise a
comparison framework that addresses the specific challenges
of comparing model-clone detectors.

The contributions of this work are:
• A set of architectural mutation operators designed for

Simulink model-clone detector comparison.
• A framework that utilizes Simulink model mutation op-

erators to allow for a more fair and quantitative analysis.
Model-clone detection tools that are developed subsequently
can use the framework to evaluate the success of their new
method and to compare to existing tools.

II. BACKGROUND

A. Model-Clone Detection

Model-clone detection entails discovering similar or iden-
tical groups of model elements. Unlike source code, which
is represented as linear text, models are typically represented
visually, as box-and-arrow diagrams. Model clones can thus
be seen as similar sub graphs of these diagrams.

Code clone detection techniques can be categorized accord-
ing to the types of clones they can identify [3]. In [2] we
adopt a similar categorization for model clone types, which
we list here briefly as the proposed mutation operators will
be designed to emulate them. Type 1 (exact) model clones
are identical model fragments, ignoring variations in visual
presentation, layout, and formatting. Type 2 (renamed) model
clones are structurally identical model fragments, ignoring
variations in labels, values, types, and the variations from Type
1. Type 3 (near-miss) model clones are model fragments with
further modifications, such as position changes or connection
with respect to other model fragments, and small additions or
removals of blocks or lines, in addition to the variations from
Type 1 and 2 clones.

Approaches intended to achieve model-clone detection can
be classified into 2 categories: those that view detection as

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1261



a graph-matching problem and those that use the underlying
textual representations. The most prevalent example of the
graph-matching approach is ConQAT [4]. It performs model-
clone detection on Simulink models by flattening the Simulink
models’ structure into graph nodes that are normalized and
labeled to contain the information needed to measure simi-
larity. As of now, they detect only exact clones. In contrast,
SIMONE [2] is an example of an approach that uses the textual
representations of Simulink models in order to find Type 1,2,
and 3 clones. Potential clones identified by SIMONE are based
on the Simulink hierarchical structure.

III. MODEL-CLONE DETECTION COMPARISON
FRAMEWORK

In previous work [1], we identified six qualitative areas to
evaluate model clone detection tools: relevance and recall,
performance, clone detection type, user-interaction required,
adaptability, and model-pattern granularity. Ideally, we want
to compare the strengths and weaknesses of each tool with
respect to these areas. By analyzing the top candidates in the
field, we want to identify areas for improvement and suggest
future research directions for model-clone detection in general.
In this paper we use mutation analysis to help us evaluate some
of these areas, specifically, relevance and recall computation;
clone detection type; and model-patten granularity. Mutation
analysis refers to a system evaluation that is based upon small
modifications, or mutations, of a system’s components and
evaluating how the system handles these changes [5]. The
mutations are derived from mutation operators that are either
representative of common modifications made to a system’s
components or showcase an important property. So, for ex-
ample, source-code mutations can be as simple as changing
variable values or complex and tailored to a specific context,
such as Java Concurrency [6].

A. Framework Design Challenges

In our early work manually comparing tools, we ran into
a number of challenges. The first challenge was determining
the recall for different tools: Specifically, of all the clones
that exist in our systems, how many of them were reported
by each tool. This proved difficult as we would first need
to determine manually all the clones in our systems, which is
impractical especially in the case of the large systems provided
from our industrial partners. This can be solved by introducing
a specific mutation operation and having either zero or some
baseline number of instances in our system that are already
discovered by the respective tools to begin with. The key here
is to generate and look for only the specific clones that come
from one specific mutation operation at a time.

As we outlined earlier [2] and demonstrate in Figure 1,
the second obstacle we found was coping with nested clones.
Without going into too much detail, this issue arises because
SIMONE reports only the outer most (sub-)system satisfiying
the difference threshold whereas ConQAT reports identical
clone groups and crosses subsystem boundaries. As shown in
the figure, the outer circles, which represent a clone pair that is

Fig. 1. Nested Clone Example [2]

70% similar, contain an inner clone pair with 90% similarity.
If ConQAT reported the 90% similar (according to SIMONE)
clone, we would not be able to find the equivalent clone in
SIMONE’s result set as SIMONE only reports the 70% outer
clone pair, as it is the largest subsystem meeting its threshold.
Neither result is undesirable, it just makes it difficult to find
corresponding matches between the two tools. This issue of
nested clones can be mitigated through mutation operations as
well. Firstly, when comparing to threshold-configurable tools,
the mutations being executed will be tailored to a specific level
at a time and the tools will be set to look for only clones at that
level. So, using the example in Figure 1, we start with lower
level clones, for example the 90% clone class in the figure,
and ensure that the tools that are configurable are set to that
threshold. For comparing a configurable tool and a tool that
identifies only exact clone matches, we can adapt and extend
the notion of Fragment Containment used for the source-code
clone mutation analysis [7] by Roy and Cordy. Specifically,
they note that if a detected clone contains the clone introduced
through mutation, then it is acceptable to say that the mutant
clone has been detected. This aligns with the definition of
“killed” mutants traditionally used in mutation analysis as
it is an example of the “non-overlap binary definition” of
detection. They define Fragment Containment as it applies to
code, but we must define it as it applies to models: Fragment
Containment in models is the case where all blocks and lines
belonging to the clone introduced through mutation are a
subset of the blocks and lines of the detected clone instance.

Lastly, tools may provide different representations of their
clone results. In our experiments, ConQAT represents clone
classes and clone instances by grouping individual blocks into
“findings” within “finding groups” in XML format. SIMONE
also reports its clone classes and instances into XML, however,
the schema of the XML has different elements including the
textual source of the model, which comprises the majority
of data in the file. We had to essentially do a manual
comparison for completeness. We address this challenge by
having our proposed framework have a normalization facility
that can transform clone result output into a common form, if
necessary. For purposes of comparison, an XML format that
lists only the blocks and lines sorted by both clone class and
respective clone instances should suffice. For each new tool
being compared, a transformation will have to be written only
once, possibly with TXL [8], that takes output from the new
tool and transforms it into this format.

1262



Fig. 2. Proposed Model-Clone Detection Comparison Framework. Adapted from [7]

B. Framework Details

In this section we present our proposed framework, shown
in Figure 2. While the general layout is similar to any mutation
framework used for test case generation and tool evaluation for
source-code, such as the one designed by Roy and Cordy [7],
our framework differs from all other techniques as it addresses
the model-specific challenges presented earlier.

As shown in Figure 2, the process begins with each mutant-
injected model being given as input to each of the respective
model-clone detectors. The tools are then executed on each
mutated model: As mentioned previously, any tool that has
configurable similarity parameters will have them set to match
the specific clone being injected. The output of this step are
clone reports. New to this framework is the transformation
of clone reports into the form we discussed previously. This
is necessary in a model version of a framework as both the
nature and representations of the model clones may differ and
impact the evaluation. The manual creation of a transformation
will have to be done only when a new tool is being used in
the framework or an existing tool changes its output format.
Otherwise, the transformation is automatic in that it can be
executed on each of the resulting clone reports as they are
generated. The transformed clone reports can then be subject
to detection evaluation, including recall calculation, which
should now be much more straightforward given that the
blocks and connectors (lines) involved in the clone instances
can be compared against those in the database, which contains
all our mutated clones in the same format. As done in a source-
code framework, the evaluation database stores the results of
the detection evaluation that are then fed into a statistical
analysis and reporting facility.

C. Simulink Model Mutation Operators

In this section we present a set of structural mutation
operators we believe are essential to evaluate Simulink model-
clone detection tools. Our proposed set of mutations is drawn
from observations of potential model edit operations we have
encountered in the large set of publicly available Simulink
models of the Mathworks Simulink demos and Matlab Central.
The development of our SIMONE model-clone detector went
through a number of iterations. In each stage we extended the
tool to detect model-clone types we adapted from the source-
code clone types in the literature.

1) Changing the Layout and Ordering of Elements: Mu-
tation operators that enable the detection for Type 1 clones
are related mainly to filtering models’ layout and presentation
attributes. Based on our experience with SIMONE develop-
ment, filtering layout attributes significantly improved recall in
finding exact and near-miss exact subsystem clones in the au-
tomotive example system. Furthermore, this allowed us to find
larger subsystem clones, covering a much larger proportion of
the extracted subsystems. We have done manual validation of
all clones found in the automotive example models, showing
that all were valid subsystem clones. However, this was fairly
cumbersome, thus exhibiting to us the importance of having
an automatic framework.

We noticed that in the textual representation of each sub-
system in Simulink the sequence of its underlying model
elements may not be the same, even in identical subsystems.
Sorting significantly increased the number of exact subsystem
clones found, but allowed much larger near-miss clones to
be identified, thus, reducing the total number reported. Based
on our experiences with filtering and sorting, respectively,
possible mutation operators for Type 1 model clones are:

• Change colour, position, size, and other layout attributes.
• Reorder blocks, lines, ports, and branches.
2) Renaming and Value Modification of Elements: To en-

able detection of Type 2 model clones, we require mutation
operators that change the name and value attributes of the
model elements. SIMONE anonymizes all names and values
associated with elements and blocks, preserving only Block-
Type and LineType elements for comparison. This allows
for detection of type 2 and near-miss type 2 (type 3-2)
subsystem clones in Simulink models. Therefore, possible
mutation operators to detect Type 2 clones are:

• Rename Block
• Rename Lines
• Change Block Value

Renaming allowed us to find over 1,900 near-miss type 2
(type 3-2) subsystem clones in the automotive example model
set, covering 75% of the subsystems. This is consistent with
the large number of different versions of models in the
demonstration examples.

3) Changes to Subsystem Structure: Mutation operators to
detect any addition, deletion, or moving of model elements
within a subsystem are required to detect Type 3 model

1263



clones. SIMONE is able to detect clones in this category
by allowing for a difference threshold of 30% using the
renaming techniques described previously. It should be noted
that any addition or deletion of model elements must take
into consideration preservation of model connectivity. Thus
an “adding blocks” operator must consider adding only source
blocks with its ports and connections to the rest of the model.
This also applies to destination blocks. Such changes will have
the minimum impact and should avoid an unconnected model.
Possible mutation operators are:

• Add or Delete block as destination. This involves sink
blocks, lines (signals), and required ports.

• Add or Delete block as source. This involves source
blocks, lines (signals), and required ports.

• Change block type
• Change subsystem clone hierarchy

D. Planned Evaluation and Experiments

So far we have been evaluating results manually. For
SIMONE, experiment results were reported in our previous
work [2]. This included a preliminary experiment to compare
SIMONE to ConQAT in which results were evaluated man-
ually. We have since automated the process of normalizing
clone reports as outlined in this paper. An implementation of
the framework is in progress, after which, we will use the
framework to validate the results we have so far from our
clone detector. Afterwards we will compare SIMONE with
ConQAT as well as other approaches. Also, we have developed
multiple versions of SIMONE, thus we can use the framework
to evaluate each version and to compare results.

IV. RELATED WORK

Other Simulink model mutation frameworks have been
proposed by Zhan and Clark [9] and He et al. [10]. Unlike
our framework, their motivation is testing and fault analysis
of concrete Simulink models, and ensuring sufficient test-case
coverage for the generated mutants. Their mutation operators
modify the signal carried on wires between blocks. We are
more interested in general mutations that modify the archi-
tectural structure of the model itself. In essence, our proposed
framework attempts to mutate a Simulink model’s design-time
properties while, in contrast, the frameworks proposed by Zhan
and Clark and He et al. mutate a model’s run-time properties.
That being said, sometimes a change in signal goes hand-in-
hand with a change in structure, and vice versa. So, it may be
interesting for us to apply some of their mutators in our work.

Roy and Cordy [3] proposed a mutation-based approach
for source code clones. While the motivation is similar and
we adapted the same idea, the mutation operators for source-
code clones were validated using “realistic” programmer edit
scenarios that cannot be carried over to a model mutation
framework. As such, we generated mutation operators based
on our experience working with Simulink models and creating
our Simulink model detector, SIMONE. We also added an
additional clone report transformation step to our framework.

V. CONCLUSION

The challenges we encountered in our early attempts at
comparing model-clone detectors made it very difficult to
obtain any useful insights. There was also a lot of manual
work required including our attempts to match resulting clones
and clone classes from one tool to another and getting the
representations to correspond in some meaningful way. In
this paper, we presented a new approach for evaluating and
comparing model-clone detectors that is based on mutation
analysis and also clone representation transformation. Extend-
ing what is done in a source-code framework, we add model-
appropriate mutators and add an extra step of normalization of
the resulting clone classes and instances found. We have begun
implementing this framework: the mutators are currently being
developed and the transformation step is complete for the tools
we are currently comparing. This framework aims to address
the challenges of manual comparison and to provide a standard
and extendable way of evaluating and comparing model-clone
detectors. Using it, the field of model-clone detection can
continue to grow as new tools and approaches can be self-
evaluated and compared to others.

ACKNOWLEDGMENTS

This work is supported by NSERC, the Natural Sciences
and Engineering Research Council of Canada, as part of the
NECSIS Automotive Partnership with General Motors, IBM
Canada and Malina Software Corp.

REFERENCES

[1] M. Stephan, M. Alafi, A. Stevenson, and J. Cordy, “Towards
qualitative comparison of simulink model clone detection ap-
proaches,” in ICSE International Workshop on Software Clones,
2012, pp. 84–85.

[2] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and
A. Stevenson, “Models are code too: Near-miss clone detection
for simulink models,” in ICSM, 2012, pp. 295–304.

[3] C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative
approach,” Science of Computer Programming, vol. 74, no. 7,
pp. 470–495, 2009.

[4] F. Deissenboeck, B. Hummel, E. Jurgens, B. Schatz, S. Wagner,
J. Girard, and S. Teuchert, “Clone detection in automotive
model-based development,” in ICSE, 2009, pp. 603–612.

[5] A. Acree, T. Budd, R. DeMillo, R. Lipton, and F. Sayward,
“Mutation analysis.” DTIC Document, Tech. Rep., 1979.

[6] J. Bradbury, J. Cordy, and J. Dingel, “Mutation operators for
concurrent Java (J2SE 5.0),” in 2nd International Workshop on
Mutation Analysis, 2006, pp. 57–62.

[7] C. Roy and J. Cordy, “A mutation / injection-based automatic
framework for evaluating code clone detection tools,” in 4th
International Workshop on Mutation Analysis, 2009, pp. 157–
166.

[8] J. Cordy, “The TXL source transformation language,” Science
of Computer Programming, vol. 61, no. 3, pp. 190–210, 2006.

[9] Y. Zhan and J. Clark, “Search-based mutation testing for
simulink models,” in Genetic and evolutionary computation
conference, 2005, pp. 1061–1068.

[10] N. He, P. Rümmer, and D. Kroening, “Test-case generation for
embedded simulink via formal concept analysis,” in 48th Design
Automation Conference, 2011, pp. 224–229.

1264


