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Abstract: Accompanying the Big Data (BD) paradigm is a resurgence in machine learning (ML). Using ML techniques
to work with BD is a complex task, requiring specialized knowledge of the problem space, domain specific
concepts, and appropriate ML approaches. However, specialists who possess that knowledge and program-
ming ability are difficult to find and expensive to train. Model-Driven Engineering (MDE) allows developers to
implement quality software through modeling using high-level domain specific concepts. In this research, we
attempt to fill the gap between MDE and the industrial need for development of ML software by demonstrating
the plausibility of applying MDE to BD. Specifically, we apply MDE to the setting of the thriving industry of
professional baseball analytics. Our case study involves developing an MDE solution for the binary classifica-
tion problem of predicting if a baseball pitch will be a fastball. We employ and refine an existing, but untested,
ML Domain-Specific Modeling Language (DSML); devise model instances representing prediction features;
create a code generation scheme; and evaluate our solution. We show our MDE solution is comparable to the
one developed through traditional programming, distribute all our artifacts for public use and extension, and
discuss the impact of our work and lessons we learned.

1 INTRODUCTION

Using data to derive patterns is a critical driver
of human knowledge and progress (Mattson, 2014).
Due to the global proliferation and ubiquity of infor-
mation processing devices, we have more data about
the world than ever before. “Big Data” is a popu-
lar term that captures the essence of this era, repre-
senting the idea of there being more data than human
beings can process without the assistance of com-
puters and algorithms. The individuals or organiza-
tions that can leverage this data to derive insights are
richly rewarded (Zimmerman, 2012). However, this
almost always requires the deployment of advanced
data processing and analysis techniques. One partic-
ularly popular technique is machine learning. A gen-
erally accepted definition of machine learning is find-
ing patterns in data that “provide insight or enable fast
and accurate decision making” (Witten et al., 2016).
This usually takes the form of an output of predictions
on new examples.

The explosive growth of machine learning has in-
troduced several new problems and challenges for
industries. Due to the esoteric nature of machine
learning, it is difficult to find software engineers that

posses mastery of machine learning techniques and
domain knowledge, or data analysts with software
engineering abilities (DeLine, 2015). One possible
approach to address this industry problem is to uti-
lize Model-Driven Engineering (MDE), which is a
paradigm focused on formal abstractions to build a
“model” of a particular application or software ar-
tifact (Kent, 2002). These models abstract the un-
derlying source code to facilitate better design and
maintenance of software. Importantly, in the MDE
paradigm, this model is used throughout the software
engineering life cycle, from requirements to testing
and deployment, and can include automatic code gen-
eration through interpretation of that model. Ideally,
an engineer may progress through the software life
cycle without ever manipulating source code, which is
very low level and can be cumbersome to manage and
maintain. Additionally, with domain-specific model-
ing languages (DSML) (Kelly and Tolvanen, 2008),
engineers can create models using a syntax consistent
with terms and abstractions from their domain.

For this paper, we attempt to help address this
industrial need by applying MDE using a machine
learning DSML to an industrial setting and data.
Specifically, we conduct a case study involving the



industry of professional baseball analytics. Baseball
is particularly suited for this type of analysis due to its
rigidly discrete nature and wealth of statistical infor-
mation over its long history. Machine learning tech-
niques are increasingly being incorporated by organi-
zations into the baseball industry (Sawchik, 2015). It
is a multi-billion dollar, competitive industry that has
wholeheartedly embraced data-driven analytics, and
thus presents an excellent case study for us to assess
the feasibility of applying MDE in a popular and prac-
tical industry. Additionally, the scale of the data pro-
vided by professional baseball is considerable. At the
highest levels of North American competition, teams
play 162 games per year that each generate thousands
of data points.

Previous work by Breuker defined a syntax
for a DSML that abstracts machine learning tech-
niques (Breuker, 2014). However, it was never ap-
plied, implemented, nor validated. Our project, which
is based on our thesis research (Koseler, 2018), serves
as the first-time realization of their syntax and lan-
guage in a popular and appropriate domain (Koseler
and Stephan, 2017b), including a definition of a code
generation scheme for a baseball binary classifica-
tion problem. While our model instances are spe-
cific to our baseball case study, the DSML itself is not
specific to baseball. We have published our refined
DSML, model instances, code generation scheme,
data cleaning scripts, and more artifacts on our repos-
itory to help enable future use of modeling in machine
learning applications and reproduction of our study 1.
We set out to answer the following questions in our
case study,

1. Is it possible to encapsulate machine learning bi-
nary classification concepts in a DSML and ac-
companying code generation scheme?

(a) What lessons did we learn in doing so?

2. Can we realize a complete application of machine
learning MDE in the context of a Big Data base-
ball use case that allows for various model in-
stances and code generation?

We begin in Section 2 by giving a brief overview
of machine learning, baseball analytics, and Breuker’s
work (Breuker, 2014). In Section 3, we describe our
method towards demonstrating the feasibility of MDE
in the machine learning domain. In Section 4, we
present and discuss the results of our method, partic-
ularly our prediction accuracy. We additionally ad-
dress our research questions, explore potential threats
to validity, explain the challenges we faced along with
the corresponding lessons we learned, and address the

1https://sc.lib.miamioh.edu/handle/2374.MIA/6234

practical impact of our work and how it may be ex-
panded upon in the future. In Section 5, we present
related work and in Section 6 we present our conclu-
sion.

2 BACKGROUND

In Section 2.1, we introduce general concepts of
supervised machine learning and the binary classifica-
tion problem, which are the focus of our case study. In
Section 2.2, we overview the field of baseball analyt-
ics and its intersection with machine learning. In Sec-
tion 2.3, we present Breuker’s preliminary work on
devising a machine-learning DSML. We omit back-
ground on MDE and DSMLs, assuming that our read-
ers posses sufficient knowledge in these areas.

2.1 Machine learning

There is broad agreement that machine learning in-
volves automated pattern extraction from data (Kelle-
her et al., 2015). The patterns extracted from machine
learning techniques are often used by analysts to make
predictions. Thus, the most common type of ma-
chine learning is supervised machine learning, which
is more dominant than unsupervised learning and re-
inforcement learning (Kelleher et al., 2015). Our re-
search focuses on this type of learning, which Bishop
defines as consisting of problems that take in training
data example input vectors, xi, and their correspond-
ing target vectors, yk (Bishop, 2006). For example,
consider the case of predicting whether a certain stu-
dent will gain admittance into university. A natural
place to begin is an examination of past admission
cycles. We might take in input vectors of student at-
tributes like GPA, test scores, and admission status
from the past year. The crucial marker of a supervised
learning problem is the inclusion of past observations
and their target vectors.

2.1.1 Binary Classification Problems

The most commonly encountered problem classes
are binary classification, multiclass classification, re-
gression, and novelty detection (Smola and Vish-
wanathan, 2008). Our research addresses the binary
classification problem, which we describe herein.

Binary classification is perhaps the most under-
stood problem in machine learning (Smola and Vish-
wanathan, 2008). Given a set of observations in a
domain X and their target values Y as training data,
determine the values Y on the test data, where Y is



a binary value that classifies the observation. In gen-
eral, the values of Y are referred to as either positive
or negative. This can be modified to suit the needs
of the user. As an example, let us return to the prob-
lem of university admissions. A student who submits
an application to a university will either be admitted
or rejected. Although there may be other admission
categories, such as “waitlist”, for the purposes of this
example we assume that admission and rejection are
the only classes.

2.2 Baseball Analytics

Due to its wealth of data and discrete nature, baseball
readily lends itself to statistical analysis more than
any other sport. Many books have been written on
the subject, and in recent years baseball teams have
embraced data-driven and statistical analysis promi-
nently and financially (Costa et al., 2012). Most of the
machine learning problem classes are applicable to
baseball, and there are a variety of examples of differ-
ent input variables and predicated variables (Koseler
and Stephan, 2018). Some of the predictions are made
in real time, for example, guessing the next pitch
or where to position the defensive fielders (Baumer
and Zimbalist, 2013). Others are made away from
the game for example in personnel decisions (Lewis,
2004).

There are many forms of statistical analysis ap-
plied to baseball that do not relate to machine learn-
ing. Even simple statistics, such as batting aver-
age or a pitcher’s win-loss record, are often useful
in determining success of a player or team. Prior to
Bill James’s popularization of more complex analy-
sis in the 1980s, these simple metrics served as the
statistical foundation of baseball for decades (Lewis,
2004). One example of more complex analysis is Bill
James’s Pythagorean expectation (James, 1987). This
is still a relatively simple formula, but it goes beyond
the basic win-loss ratio to calculate the expected num-
ber of wins for a team given their runs scored and runs
allowed. The formula is as follows,

ExpectedWinRatio =

RunsScored2/(RunsScored2 +RunsAllowed2)

This Pythagorean expectation might be appropriate
for a sports website or for amateur fans and analysts,
as it is both simple to use and reasonably effective
in its predictive power. The machine learning anal-
yses such as the one we focus on in this paper and
the examples we present in the next section are more
appropriate for professional analysts and academics
interested in the field, as they are more complex and
more powerful.

2.2.1 Machine Learning Applied to Baseball

Machine learning’s predictive power has led to its
use in baseball for both practical and research ap-
plications (Koseler and Stephan, 2017a). In gen-
eral, analyses that employ machine learning improve
with increasing numbers of observations (Russell and
Norvig, 2003). Due to baseball’s relatively large num-
ber of observations from 162 games per season with
30 teams, machine learning is a very viable candidate
for strong predictive power in baseball.

Our case study focuses on predicting whether a
pitcher’s next pitch will be a fastball or not. This
information is extremely valuable in the context of
baseball as it assists a hitter in devising an approach
and strategy at the plate. This is a binary classifica-
tion problem in that there are two classes: fastball
and non-fastball. Previous researchers have demon-
strated excellent predictive improvements when using
machine learning for this exact problem. Ganeshapil-
lai and Guttag programmed a linear support vector
machine classifier to classify pitches based on data
from the 2008 season and predict the pitches of the
2009 season (Ganeshapillai and Guttag, 2012). Sup-
port vector machines are a type of supervised learn-
ing that attempt to find a “separating hyperplane that
leads to the maximum margin” (Kelleher et al., 2015),
which places classes on different sides of a hyper-
plane (line), with a large margin extending on either
side of the hyperplane. This is the type of learning
that has feedback associated with it, such as labeled
examples. In their experiments, the 2008 pitching
data was the feedback, which contained labeled ex-
amples of the type of pitch that was thrown by the
pitcher. The performance improvement witnessed by
their approach over a naive classifier was approxi-
mately 18%. The naive classifier can be thought of as
a simple Bayes classification based on probability. In
other words, if a pitcher in 2008 used a fastball greater
than 50% of the time, the naive classifier would pre-
dict that every pitch in 2009 would be a fastball. The
model the two researchers created was able to cor-
rectly predict the next pitch 70% of the time, whereas
the naive classifier was able to correctly predict the
next pitch 52% of the time. This type of analysis us-
ing a support vector machine is one of the most widely
used methods for binary classification.

2.3 Big Data DSML

Based on our research, the only DSML designed
to model machine learning was first proposed by
Breuker in 2014 (Breuker, 2014). This DSML was
designed to bridge the gap between high demand in



industry for Big Data analysts and their lack of soft-
ware skills. Although designing and implementing
algorithms for Big Data analytics is difficult and in-
volved, there are several tools to facilitate the task.
Breuker’s DSML represents an abstraction of a prob-
abilistic graphical model (PGM). A PGM is a repre-
sentation of a probabilistic model and is comprised
primarily of variables and their relationships. Breuker
defines requirements for PGMs to be represented as a
DSML to include 1) a “modeling language to express
distributions as graphs” and 2) an inference algorithm
that processes the graphs to “answer questions re-
garding conditional marginal distributions” (Breuker,
2014). Breuker’s DSML was built explicitly to work
with the Infer.NET 2 C# library. This library builds
a PGM by having users define variables and con-
necting them with factors. The software compiles
the inference model defined by the user’s code and
runs the given inference algorithm. Infer.NET devel-
opers build the inference model through code rather
than MDE-like, graphical, modeling. This is one sig-
nificant shortcoming of the Infer.NET library and all
other similar libraries.

Breuker’s DSML allows a user to build their in-
ference models graphically rather than through code.
We omit Breuker’s DSML original syntax metamodel
from this paper for the sake of brevity and because
we provide a representation of it when describing our
approach. Breuker provides no accompanying de-
fined code generation scheme, but they do outline a
simple skeleton consisting of three methods within
a single C# class: GenerateModel, In f erPosteriors,
and MakePredictions (Breuker, 2014). We thus adapt
their concepts as is because they are tailored to work
with Infer.NET. By employing their DSML to con-
duct our case study, we are also validating the DSML
by using it in a full end-to-end realization.

3 METHOD

We present an overview of our method in Figure 1.
We first form and refine our metamodel in Papyrus.
We then create multiple model instances conforming
to that metamodel to showcase an ability to update
and incrementally create model instances. We then
derive and test our code generation engine. Our last
step involves us performing code execution and val-
idation experiments. We elaborate on these steps in
this section.

2https://www.microsoft.com/en-
us/research/project/infernet/

3.1 Metamodel Formation

For our first task, we created a representation of the
machine learning DSML in Papyrus (Gérard et al.,
2010). Papyrus is an open-source software tool for
supporting MDE. We chose to use Papyrus because
it was free, open-source, and allows users to define
and use their own DSMLs. We aimed to have the
Papyrus metamodel match the metamodel specified
by Breuker as closely as possible. We present our
representation in Figure 2. As Papyrus uses UML
on the back-end, the basic elements of our DSML
are extensions of the UML element Class. This re-
lationship is demonstrated through the filled triangle
arrow. The Node, Gate, GateOption, and Plate ele-
ments are the only elements that extend from Class.
The Variable and Factor elements are both special-
izations of Node. Observed Variable and Random
Variable are specializations of Variable. This special-
ization/generalization is represented by the triangle-
tipped arrow. Finally, the arrows with an open tip
represent different relationships in the Breuker meta-
model. These relationships are made explicit through
a relationship name which is labeled accordingly. For
instance, the relationship between a Plate and a Factor
indicates that a Plate selects a factor, and we labeled
this “selectsFactor.” Barring the Papyrus-required
and initial extension from the UML element “Class,”
this is in accordance with the metamodel defined by
Breuker.

Upon completion of this step of the MDE pro-
cess, we enable modelers to build their own model in-
stances that conform to, and can be validated against,
the metamodel. Although we eventually create a code
generation scheme that is targeted at a binary clas-
sification use case only, our Papyrus metamodel will
help future users target different use cases and ensure
that their model instance conforms to the metamodel.
It is available for download on our public university
repository. This is the first realization of the Breuker
metamodel. The crucial elements of this DSML are
the Observed Variables, Random Variables, and Fac-
tors. To model a binary classification problem and
take advantage of our code generation engine, a mod-
eler implementing an instance model first designates
the training data features as Observed Variables. They
then choose a Variable that will be predicted with test
data. This “predict” Variable should be connected to
the features by a Factor, which contains a Random
Variable representing a weight matrix. Any number of
features corresponding to Observed Variables can be
modeled, but only one Factor/Random Variable pair
may be used. In addition, there should be only one
Observed Variable to be predicted. Of course, model-



Figure 1: Overview of our Method.

Figure 2: Metamodel in Papyrus.

ers will have to have knowledge of the machine learn-
ing concepts abstracted in the meta model in order to
create instance models, however they will not need to
develop any code.

3.2 Creation of Different Model
Instances

To help validate our DSML metamodel and answer
our research question regarding various model in-
stances, we decided to create several iterations of
model instances conforming to the metamodel. Each
of these model instances must be capable of predict-
ing if the next pitch will be a fastball and will vary in
their different features for pitch classification. That is,
the purpose of each instance model is to represent the
factors considered when deciding whether each ob-

servation (pitch) will be a fastball or not. For exam-
ple, Figure 3 presents a first iteration model instance
that uses count (balls and strikes) as the sole predic-
tive factor for the next pitch. A refined version of
this model instance we created, which we present in
Figure 4, uses the count as before but now includes
the pitcher’s Earned Run Average (ERA) as a factor
in predicting the pitch. For these two examples, we
use Papyrus’ built-in model validation tool to validate
these model instances, finding no errors or warnings,
indicating that they conform to our metamodel.

These basic model instances were designed to
represent a feasible real-world application of base-
ball analytics and showcase iterative model develop-
ment. The use of count and ERA as predictive fea-
tures is common when evaluating a pitcher’s antic-
ipated behavior. While these may be simple exam-



Figure 3: First Iteration Model Instance with Count as Sole
Factor (Strikes and Balls).

Figure 4: Second Iteration Model Instance with Count and
Pitchers ERA as Factors.

ples, they are appropriate for an amateur/novice an-
alyst. These examples also help us confirm that we
have correctly implemented our metamodel through
Papyrus’ built in model-validation functionality. We
were able to validate these models manually, and their
successful validation through Papyrus indicates meta-
model correctness. Through these simple examples,
we demonstrate incrementally developing software
through small updates to the model instance.

The final iteration of our model instance that
we built consisted of 18 factors adapted from the
work of Ganeshapillai and Guttag (Ganeshapillai and
Guttag, 2012). Due to our inability to obtain the
original data source, as we will discuss later, we

were limited in our ability to model the original
36 features. The factors we include are Inning,
Handedness, NumberOfPitches, Strikes, Balls, Outs,
BasesLoaded, HomePrior, CountPrior, BattingTeam-
Prior, BatterPrior, HomePriorSupport, CountPrior-
Support, BatTeamPriorSupport, BatterPriorSupport,
PreviousPitchType, PreviousPitchResult, and Pre-
viousPitchVelocity. We further define these fac-
tors/terms in the glossary of our thesis (Koseler,
2018). We present our full model instance in Fig-
ure 5. In the interest of readability, we do not display
the names of the relationships between the constructs
in the model instance and we condense the model ele-
ments. The relatively large number of predictive fea-
tures makes it difficult to create an aesthetically pleas-
ing and readable model for us to present in this paper.
However, the model navigator in Papyrus allows for
easier interpretation, and, in either case, models are
better suited for readability than source code. Users
can download these models on our public repository
to view in Papyrus. In the next section, we discuss
the code generation engine we designed that automat-
ically generates code from these model instances.

3.3 Devising the Code Generation
Engine

In this step, we devised a code generation engine
that 1) parses models conforming to our DSML and
2) generates a C# file that can be used out-of-the-
box to make predictions on test data. We completed
this step from scratch as Breuker provided no code
nor examples, instead merely proposing a code lay-
out. Our goal was to have the resulting C# code use
the Infer.NET library to create a coded abstraction of
the user-defined model. We wrote our code template
using Epsilon Coordination Language (EGX), EGL
(Epsilon Generation Language), and the Epsilon Ob-
ject Language (EOL) (Kolovos et al., 2006). Our code
generation template is comprised of eighty four lines
of code. This will automatically generate source code
totaling roughly eighty four lines of code that makes
calls to the Infer.NET library.

Although we represented the entire DSML as a
metamodel in Papyrus that can be used for construct-
ing models, the Factors and Observed & Random
Variables are the only ones that we accounted for in
our code generation engine. We ignored the other
constructs, such as Gate, GateOption, and Plate as
they were unnecessary for our case study to demon-
strate the plausibility of using MDE to create machine
learning software without writing code manually.

We have uploaded our code generation template to
our public university repository along with the other



Figure 5: Complete Model Instance with 18 Factors.

artifacts we generated for this project. In the Epsilon
family of languages, text in the code template that
is enclosed in “[%” brackets is dynamic and variable
based on the user-defined model instances. All other
text in the template is static. Our first step in our code
generator parsing is to have the engine collect the Ob-
served Variables and determine which of them is to
be predicted by the generated software. We then have
the engine create an array for each Observed Vari-
able containing its training values and insert it into
the code. This step also inserts the Boolean array of
training values for the Observed Variable that will be
predicted by the software. The generated code pro-
ceeds to initialize a weight matrix with random num-
bers from a Gaussian distribution, with the size of the
matrix corresponding to the number of features.

This training data is passed by the generated code
to a method that updates the weights based on the
training data using the Expectation Propagation algo-
rithm (Minka, 2001) to infer the posterior distribu-
tion of the weight matrix. In machine learning, this
is referred to as “training” the model. The gener-
ated code then creates arrays to hold the test data and
makes predictions on this data. The output consists
of a probability for each observation (pitch), indicat-
ing the likelihood that the given observation belongs
to the “true” class. Recall that this is due to the tar-
get training data consisting of a Boolean “true/false”
array. In our baseball analytics use case, the output
indicates the probability of the next pitch being a fast-
ball.

3.3.1 Quality of Generated Code

The quality of the generated code is important be-
cause the code generated in MDE techniques must be
correct and robust since users will interact with mod-
eling artifacts only, not code. To help assess the qual-
ity of the generated code, we used input space par-
titioning (Ammann and Offutt, 2016) to test the code
by devising several different inputs as training and test
data. For instance, the test case of using valid integers

for the “strikes” data that do not make sense in the
context of baseball, such as a value of 10 where there
can be only a value of 0,1, or 2 strikes. Overall, we
found the quality of the code to be fairly high, with
some important areas for improvement. In particu-
lar, a mismatched number of training observations for
each Observed Variable is allowed by the program.
If a user inputs 3 values for one Observed Variable
and 4 for another, the code will still execute when it
should throw an exception. The generated code can
still make predictions given nonsensical data, but the
value of these observations is limited. We plan on
addressing such concerns in future work by placing
limits on the possible values that can be entered in
Papyrus. Given that Papyrus allows for such limits on
entered values, our MDE method need not be limited
to the realm of baseball analytics. These limits can be
adjusted as appropriate depending upon the domain.

3.4 Code Execution and Validation

The actual data set we used consisted of the play-by-
play pitching statistics from the 2016 and 2017 MLB
seasons of the Cincinnati Reds, New York Yankees,
New York Mets, and Toronto Blue Jays. Specifically,
we considered all pitchers from these four teams in
2016 and used their 2017 pitch data to test our pre-
diction model. Even if a pitcher switched teams in
2017, we still considered their pitch data on that new
team. Similarly, we also removed pitchers from the
2016 data who retired or were free agents, and thus
did not pitch during the 2017 season. We retrieved
this data from Baseball Savant, which provides of-
ficial Major League Baseball data available publicly
for free 3. Through this interface, we were able to en-
ter manual queries that gave us play-by-play data for
these 4 teams/pitchers in 2016 and 2017. Each season
consisted of roughly 85,000 observations. We have
uploaded this training and test data to our repository
to allow for reproduction of our experiments. We used

3https://baseballsavant.mlb.com



the 2016 season data as training data and the 2017
season as the test data to evaluate our prediction ac-
curacy.

After building our final model instance, we needed
a way to feed it our large data set of approxi-
mately 85,000 observations. Papyrus allows data en-
try through its interface, but no systematic method of
inputting large strings of information. To feed data to
the model, we had to enter the observations for each
Observed Variable as a string in the format {x1, x2,
... , xn}, where n = NumberO f Observations. Thus,
we used Python and the Pandas library4 to read our
data, which is in the form of a comma separated val-
ues (CSV) file.

To help validate our model and the process as a
whole we fed this formatted data to our complete
model instance in Papyrus, subsequently generating
an executable C# file. After running this C# file, we
obtained a list of output probabilities for each test
observation. We then imported these probabilities
into Python as a Pandas series and classified them as
“true” if the probability was greater than 50%, oth-
erwise they were classified as false. We then com-
pared it against our actual test data from 2017. We
further compared our predictions against the predic-
tions that would be made by a naive classifier. The
naive classifier classifies the 2017 observations based
on the pitcher’s overall prior probability from 2016.
In other words, if the pitcher in 2016 threw fastballs
more than 50% of the time, the naive classifier would
classify all pitches in 2017 as fastballs.

4 RESULTS AND DISCUSSION

In this section, we present the quantitative re-
sults of using our DSML full-factored model instance
and automatic code generation MDE solution to this
baseball analytics binary classification problem. This
mimics the process that analysts can follow now that
we have created meta models and code generation en-
gine. We followed the steps that an analyst would
take, that is, formatting our data, building the instance
model conforming to the meta model, feeding the data
into the instance model, and running our automati-
cally generated software. In doing so, our software
exhibited a prediction accuracy of 71.36%. That is,
our prediction model was able to successfully deter-
mine if the next pitch was a fastball or not 71.36%
of the time in the 2017 season. In contrast to a tradi-
tional programming based solution, this DSML sys-
tem helped the modeler in that Infer.NET calls were

4https://pandas.pydata.org/

Figure 6: Prediction Accuracy for our Work and Gane-
shapillai and Guttag’s.

invoked through an easily generated and modifiable
instance model conforming to a meta model, not re-
quiring a user to deal with source code at all.

While our prediction accuracy is higher than
Ganeshapillai and Guttag, we must note that our
model exhibited a smaller increase over the naive
classifier than their work. When using a naive clas-
sifier for our data set, there was a prediction accuracy
of 61.72%. Thus, we achieved about 15.6% improve-
ment against the naive classifier. This is certainly a
positive result as we have demonstrated a significant
improvement in accuracy over the naive classifier.
However, Ganeshapillai and Guttag achieved roughly
18% improvement in prediction accuracy, which is
somewhat higher than ours. We consider this further
in our discussion, however, our goal was to validate
the plausibility of the MDE approach to building ma-
chine learning software. The key quantitative take-
away is that our automatically generated C# code ex-
ecuted and gave us an improvement in prediction ac-
curacy over a naive classifier. Figure 6 illustrates the
prediction accuracy of our work versus that of Gane-
shapillai and Guttag.

4.1 Research Questions

At the beginning of this project, we set out to an-
swer two main research questions. Regarding our
first question, we were able to successfully encapsu-
late machine learning binary classification concepts
in a DSML and devise an accompanying code gen-
eration scheme. Although we demonstrated this with
a baseball analytics use case, our DSML metamodel
is general in that it will allow a user to enter what-
ever data they wish, as long as there are training and
test observations. We successfully built a code gen-
eration engine that parses a model to build machine
learning software and can support a number of fea-



tures and observations. For the second part of our first
research question, we encountered several challenges
which we document in Section 4.3.

For our second research question, we realized
a complete application of MDE for machine learn-
ing that allows for model updates/refinements and
code generation through a baseball analytics use case.
We created some iterations of model instances to
demonstrate model updates. We essentially built our
model instances in a step-by-step incremental fashion.
We facilitated generated code for a large and fully-
featured predictive model that can be used for mean-
ingful analysis. Through the use of MDE software
models, we automatically generated executable code,
which is the essence of MDE. In our solution, domain
experts need to have knowledge of machine learning
concepts only, rather than machine learning concepts
and source code development skills. We have essen-
tially raised the level of abstraction for analysts to de-
velop solutions.

4.2 Threats to Validity

Most prominently, our training and test data is differ-
ent than the set that Ganeshapillai and Guttag (Gane-
shapillai and Guttag, 2012) used for their research.
We used the 2016 MLB season as training data and
the 2017 season as test data, whereas they used the
2008 MLB season as training data and the 2009 sea-
son as test data. We reached out to both researchers
and the data owners, and they were unwilling to pro-
vide us access to that data. The data was avail-
able for purchase but at a prohibitively expensive
cost as the data owners had changed their business
model since Ganeshapillai and Guttag’s original ex-
periments. Since we were concerned mainly with the
plausibility of using MDE for this binary classifica-
tion problem and exhibiting only comparable results
to the traditional coded approach, we decided hav-
ing their exact data was unnecessary and that real-life
baseball data, albeit from a different year, was accept-
able. However, it is still a threat to validity. It may
be the case that had we used their older data set, our
prediction accuracy increase would be quite different.
The game of baseball has changed significantly since
the time of that data. Baseball teams have invested
heavily in statistical analysis departments and conse-
quently changed their approach to pitching and the
game in general.

We used a smaller set of factors than Ganeshapil-
lai and Guttag did in their work. As a result of be-
ing unable to obtain the original curated data set, we
had to resort to the limited data set provided by the
free Baseball Savant website. For example, we did

not have access to play-by-play statistics for each bat-
ter that was facing the pitcher. This inability to build
a deep batter profile likely resulted in a loss in our
prediction accuracy. Although the batter was taken
into account, it was only through simple identification
and pitcher-batter priors. Due to the necessary oner-
ous web querying required to gather data on the free
Baseball Savant website, we decided to use 4 MLB
teams as our baseline rather than the entire league,
resulting in 85,000 observations. We used the New
York Mets, New York Yankees, Toronto Blue Jays,
and Cincinnati Reds as these were teams of personal
interest to us. Undoubtedly, this is a limitation and
threat to validity to our prediction accuracy. Despite
this limitation, our work still shows the feasibility of
building machine learning software through the MDE
paradigm, and our prediction accuracy was very simi-
lar to that of Ganeshapillai and Guttag. Achieving this
without having to write any source code manually is
a significant result in itself.

Another important threat to validity is our use of
a different algorithm for making predictions. Gane-
shapillai and Guttag used a Support Vector Machine
to classify their pitches. Because we were extend-
ing a DSML that is intended for use with the In-
fer.NET library, we were limited in the algorithms
that were available to us. In particular, Infer.NET
has no constructs that allow for a Support Vector Ma-
chine. Because the Infer.NET library is based on in-
ference learning for probabilistic graphical models,
the algorithms are likewise limited. We had to use a
Bayes Point Machine classifier, which may have im-
pacted potential prediction accuracy. This represents
a limitation of our DSML.

Finally, our metamodel and code generation en-
gine were built to work with Papyrus. We chose Pa-
pyrus as it is free and open-source, can work on all
major operating systems (Linux, macOS, Windows),
and has growing support in both research and indus-
try. This is a threat to validity as we did not consider
other MDE DSML tools. To simplify future exper-
iments in Papyrus and other tools, we’ve included a
ready-to-import Papyrus project in our public reposi-
tory that can be used directly in Papyrus or converted
for other tools.

4.3 Lessons Learned and Challenges

Part of our goal in our industrial case study was to
help identify lessons that we learned and interesting
challenges.

Before beginning the research and modeling pro-
cess, we first needed to gather real-world Major
League Baseball data, ideally the same data as that



used by Ganeshapillai and Guttag (Ganeshapillai and
Guttag, 2012). Upon contacting their data source,
STATS Inc., we were told that such data was no longer
publicly available and the quoted purchase price was
prohibitively expensive. As a result, we decided to
use Baseball Savant’s web interface. This website did
not have the 2008 nor 2009 data, thus we decided to
use the more recent 2016 and 2017 data. While this
data was sufficient for our goals and research ques-
tions, this experience calls attention to one of the ma-
jor problems in the machine learning field of finding
relevant and clean data. Future researchers should
keep this in mind as a high priority for their projects.

Another challenge we faced was the learning
curve in using EGX and EGL to write the code gener-
ation engine. In the process of learning how to use
these components of the Epsilon Object Language,
we had to make multiple forum posts on the Epsilon
forum. This is fair and to be expected for an open-
source language. Like our previous lesson, future re-
searchers who wish to use EGX and EGL should be
aware of the time investment required to sufficiently
comprehend the API. Searching and contributing fo-
rum posts on the official Epsilon forum may prove
useful, as it did for us.

The open-source nature of both Papyrus and the
Epsilon Object Language was probably the most
significant challenge we encountered, albeit a tool-
related one. In addition to having to rely on the
open-source community, we found ourselves wanting
greater customization options for the Papyrus dash-
board. In particular, when a user uses our metamodel
to instantiate their own model instance, they must first
create it as a UML class. They must then click on this
class and successively follow the Properties -> Pro-
file -> Applied Stereotypes menu chain before select-
ing their desired stereotype. These stereotypes cor-
respond to our DSML constructs of Observed Vari-
able, Random Variable, and Factor. Another obsta-
cle we faced in using Papyrus was the method re-
quired to feed data to the model. As we discussed in
Section 3.4, there is no systematic way to feed large
strings of information to the model, so it must be done
manually.

4.4 Potential Impact and Future Work

The target audience for this work is domain experts
who want to build machine learning software without
manually writing source code. This can include orga-
nizations that possess the requisite machine learning
and computer science expertise, but cannot spare the
time nor resources to write code in a traditional man-
ner. Although our work’s scope is limited in that it

applies to binary classification problems only, it was
able to support a fair amount of features and training
observations.

An important impact of this work is that we pub-
lished our code generation engine, models, and other
artifacts on our public repository, and they are open-
source and free to use. This makes it a cost-effective
solution, or starting point, for individuals or organiza-
tions that are building binary classification systems.
Even if individuals are not interested in our code gen-
eration engine, we believe that our metamodel rep-
resentation in Papyrus can serve as a valuable tool
for future practitioners building probabilistic graph-
ical models.

We anticipate this work will help serve as a step-
ping stone to future research by moving towards prov-
ing the viability of MDE in the machine learning do-
main. The industrial use case of baseball analytics
is an entirely relevant and economically viable one
to demonstrate the potential practical impact of this
work. While one can have doubts about the represen-
tatives of baseball analytics for industrial practition-
ers, future practitioners or academics can build off of
this project to further flesh out the code generation
engine and make it robust for other machine learn-
ing problem classes, and optionally address the Gate,
GateOption, and Plate constructs that were unneces-
sary for our case study. Although we chose to demon-
strate the feasibility of MDE in the machine learning
domain through a baseball analytics case study, future
researchers can apply these same techniques to differ-
ent problems and data sources. We plan on doing so
to measure the generality of this work to other appli-
cations and problems, and to facilitate further under-
standing and use. The code generation we developed
is problem-agnostic; as long as the data is formatted
properly for a binary classification problem, the gen-
erated software can derive meaningful predictions.

An interesting area of future work would be to
assess the degree of difficulty involved in using our
approach. For example, we could recruit volunteers
to help further support our claim that MDE is vi-
able in the machine learning domain. Additionally,
we could quantify how much effort a domain expert
would require to address a relevant domain data prob-
lem, and how much they enjoyed this MDE-based
method. Lastly, we could also compare it to some of
the approaches we describe in our Related Work sec-
tion using the same dataset to better explicate its ad-
vantages and benefits over other methods. We deemed
this beyond the scope of the project at this time.



5 RELATED WORK
To our knowledge, while there is some work

on machine learning domain specific languages
(DSL) (Portugal et al., 2016), there is little other re-
lated work in creating a machine learning DSML (Za-
far et al., 2017). The paper by Breuker (Breuker,
2014) was only exploratory in nature, and has not
been cited in anything other than survey papers un-
til this time. Ours appears to be the first original work
in realizing this DSML and demonstrating its viability
for building quality machine learning software.

There are several software packages that allow for
rapid application of machine learning algorithms on
sets of data. One example is the Orange package,
which is part of the Anaconda Python distribution.
Orange can be more thought of, and is advertised
as, a data mining suite (Demšar et al., 2013). The
crucial difference between our work and Orange is
that Orange does not adhere to nor support the MDE
approach to formal software engineering. Although
users interact with a visual interface and can connect
certain components like “Data” or “Analysis” to one
another, there is no model validation and no resultant
automatically generated software. Rather, the Orange
package allows one to apply a machine learning al-
gorithm to user data, assess prediction accuracy, and
build visualizations. There are other similar UI-based
editors for machine learning work flows, but they do
not follow a strict model-driven approach.

WEKA is a similar package to Orange, which al-
lows users to perform data mining on their data sets
with a variety of different machine learning algo-
rithms (Hall et al., 2009). WEKA bears even less
of a resemblance to the MDE paradigm than Orange.
There is no visual connecting of components like
there is with Orange. Consequently, WEKA does not
allow a user to define a model for what their program
should look like.

TensorFlow is a machine learning framework de-
veloped by Google Brain that is used in training neu-
ral networks (Abadi et al., 2016). The idea behind
TensorFlow is very similar to that of Infer.NET, in that
the user defines models of behavior using code. While
Infer.NET is used for defining probabilistic graphical
models, TensorFlow is used primarily to define neu-
ral network architectures. Although TensorFlow does
not define itself as an MDE language in any tradi-
tional sense, one can argue a neural network architec-
ture defined in TensorFlow is analogous to a software
engineering model. A significant difference in their
work and ours is TensorFlow does not allow the user
to define/create neural network architectures in a vi-
sual manner. The Tensorboard feature allows the user
to view existing models that have already been built

through user-defined code. Some potential research
we may consider includes developing some type of
visual modeling layer on top of TensorFlow, very sim-
ilar to what we have accomplished with this work, al-
lowing the user to define TensorFlow models without
writing any code by hand.

6 CONCLUSION
In this paper, we considered the plausibility of

using Model-Driven Engineering to build machine
learning software. Much like Breuker (Breuker,
2014), we were motivated by the industrial problem
of having a high demand for machine learning ex-
pertise and a shortage of individuals with the tech-
nical knowledge required to build such quality soft-
ware systems. In particular, there are many domain
experts in various fields who could benefit from such
software but have neither the expertise nor resources
required. We hoped that MDE could help address this
shortfall, and thus looked for other research that had
been performed in this domain. Breuker’s incomplete
proposal for a machine learning DSML was the only
one we found. Although incomplete, the metamodel
they proposed was a direct mapping of the constructs
in the Infer.NET library, which are themselves con-
structs taken from probabilistic graphical models.

We defined and refined Breuker’s metamodel in
Papyrus, an open-source package that allows users
to describe their own modeling languages and create
model instances conforming to that language. Thus,
our work allows a user to build model instances in
Papyrus and have the native model validation tool en-
sure that their model instances are in accordance with
the metamodel. To confirm this, we built several it-
erations of model instances of the baseball analyt-
ics problem of classifying pitches as fastball or non-
fastball based on past data. Our early iteration model
instances allowed us to determine the ease of quickly
and incrementally building and defining our software
through models. Further, we built a code genera-
tion engine using EGX, EGL, and the Epsilon Object
Language that allows users to generate code based
on their model instances. Our case study took 2016
MLB data from pitchers for four teams as training
data and 2017 data from those same pitchers as test
data. Building a model that emulated many of the fea-
tures from work by Ganeshapillai and Guttag (Gane-
shapillai and Guttag, 2012), we successfully achieved
a comparable increase in prediction accuracy over a
naive classifier. Most importantly, we did this through
automatically generated code that we used to make
predictions. Our application of this MDE solution to
an industrial machine learning context provides evi-
dence of a complete application of machine learning



MDE, and helps prove the viability of MDE in the
machine learning domain. We believe the practical
impact of this work includes helping facilitate future
MDE machine learning practice and research through
extension of, and drawing inspiration from, our de-
scribed process and the artifacts we published on our
repository.
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