
Chapter 1

Model Clone Detection and its role
in Emergent Model Pattern Mining
Towards using Model Clone Detectors as
Emergent Pattern Miners - Potential and Challenges

Matthew Stephan∗ and Eric J. Rapos∗
∗Miami University, Department of Computer Science and Software Engineering
510 E. High St., Oxford, OH 45056

ABSTRACT
Model-based software engineering approaches continue to gain traction in both industry
and research. Accordingly the size, complexity, and prevalence of the models themselves
are increasing. Model analysis and management thus becomes an essential task within
any model-based process. One form of analysis that can support model-based approaches
during the software engineering life cycle is pattern extraction, whereby tooling identifies
emergent model patterns. These patterns can be used by analysts to ensure adherence to
standards, software quality assurance, and library generation and optimization. In this
chapter, we discuss the plausibility of using model clone detection as a form of emergent
pattern mining for model-based systems. After a brief primer on the field of model clone
detection and model pattern detection, we propose a conceptual framework, MCPM,
centered on model clone detection that analysts can employ to detect emergent patterns
in their models. In describing our framework concept, we illustrate our ideas using
Simulink, and our Simulink model clone detector, Simone, as an example. However,
we also consider other model clone detectors’ potential within the MCPM framework.
This includes how existing research and tooling can be applied to each step within the
framework. We identify open challenges for researchers in realizingmodel clone detection
as a model pattern mining tool, as well the potential benefit that can be experienced by
practitioners in the application of MCPM.

KEYWORDS
model clone detection, model clones, model patternmining, model patterns, model driven
engineering

1.1 INTRODUCTION

As the proliferation of model driven engineering continues [77], there is an
emergence and continuous flow of software models. This includes model repos-
itories, for example MDEForge [10] and the Lindholmen Dataset [32]; common
open source repositories that contain models, such as GitHub and SourceForge;

1
The following is the preprint version of an accepted chapter in the book
Model Management and Analytics for Large Scale Systems ISBN:
9780128166499. Link: https://www.elsevier.com/books/model-
management-and-analytics-for-large-scale-systems/
tekinerdogan/978-0-12-816649-9

https://www.elsevier.com/books/model-management-and-analytics-for-large-scale-systems/tekinerdogan/978-0-12-816649-9

222

and organizations’ internal repositories. Source-code based techniques are not
applicable nor suitable for model-specific analytics. While this, and the in-
creasing scale and intricacy of software models, presents interesting challenges
in repository management, model visualization, and other areas we address in
this book, it gives rise to more advanced and learning-based opportunities for
analytics.

One such opportunity is software pattern extraction based on a corpus of
software models. Mining traditional software source code in general is a ma-
ture and growing field [30]. However, the mining of model driven engineering
artifacts is only recently gaining traction as model-based approaches become
more widespread, and the complexity and size of the artifacts has grown. For
this chapter, we are interested solely in emergent patterns, which are recurring
software solutions that occur organically within software projects that are not
known to analysts beforehand. Such a facility can help in areas such as stan-
dards enforcement, quality assurance, software development and refactoring,
maintenance, and others. Sharma et al., from NEC Labratories America, iden-
tify pattern matching as a key challenge in the field of cyber-physical systems
(CPS) [59], which are often developed exclusively or predominately as software
models [20].

One tool for model-driven engineering analysis is model clone detection [19].
Model clone detection is a form of model comparison [67] that involves ana-
lyzing models to identify identical and/or similar models with respect to some
measure of similarity. Similarity analysis can include both structural and seman-
tic aspects. Clone detection in software has many uses including estimation of
maintenance costs, fault prediction, refactoring, and others [35]. In this chapter,
we describe using model clone detection as an emergent model pattern miner
within a conceptual Model Clone detection PatternMining (MCPM) framework.
We describe model clone detection’s role in the MCPM, including its potential
and challenges; how existing work fits into the requirements of the MCPM
framework; and provide examples. Our goal is to improve model analytics by
helping pave the way for model clone detection to be used as an analytical tool
that discovers emergent patterns.

We begin in Section 1.2 by providing the background material necessary to
understand this chapter. In Section 1.3, we define our MCPM concept with a
detailed description of the framework, its sub steps, examples, and a review of
existing tools and research for each of its phases. We identify open challenges
and future work related to the MCPM framework in Section 1.4, and conclude
in Section 1.5.

1.2 BACKGROUND MATERIAL

In this section, we describe background material on software patterns in general
with a focus on pattern mining for source code and models, and model clone
detection. For the latter, we describe the different types of model clones, as that

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 3Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 3Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 3

is an important consideration when describing our framework’s requirements for
MCPM.

1.2.1 Software Patterns

Software patterns are an integral part of software engineering. They can be
thought of as successful, commonly employed, and validated approaches to
solving a software engineering problem [58]. They are an abstraction that oc-
curs in "non-arbitrary" and recurring contexts [52]. One of the most popular
examples, both in education and practice, are design patterns [15], which de-
scribe established software development solutions to frequent design problems.
The opposite of design patterns are anti patterns, which are commonly occur-
ring incorrect/problematic ways that people solve problems using software [13].
The term ’patterns’ can be used as an umbrella term for both, and we do so in
this chapter unless we otherwise use the explicit "design" or "anti" descriptors.
Software patterns exist also for many other domains and contexts. For exam-
ple, software security patterns [24], agent-oriented domains [41], architectural
patterns [29, 61], agile development [44], and others. Software patterns have
many uses including software evolution [81], architecture evaluation [82], fault
detection [21], and establishing traceability links [36]. Traditionally, software
patterns have been formulatedmanually by industrial and academic experts based
on real-life development experiences and struggles, a posteriori [75]. However,
it also is possible to have unknown patterns detected through analysis of existing
systems through the process of pattern mining. For this chapter, we are interested
specifically in emergent patterns, which occur naturally within software projects
and are not known to analysts before system evaluation.

1.2.1.1 Source Code Pattern Mining and Detection
Analysis of software systems to discover patterns allows analysts to identify
and codify commonly occurring solutions and implementations within software
systems. This can involve mining patterns from software revision histories [42],
source code [8, 80], execution traces [55, 73], architectures [45, 82], and more.
A common application of source code pattern mining is to detect the presence of
known design patters. Dong et al. [22] identified seven different categories for
design patternmining through a survey of the literature: structural aspectmining;
behavioral aspect mining; structural and behavioral aspect mining; structural and
semantic mining; structural, behavioral, and semantic aspect mining; and pattern
composition. Structural aspects refer to design relationships, such as aggregation
and generalization. Balany and Ferenc [8] similarly mine design patterns, but do
so by building an abstract semantic graph from C++ code. Shi and Olsson [60]
detect design patterns in Java code by focusing on structure-driven and behavior-
driven patterns from the popular Gang of Four design pattern list [15]. Tsantalis
et al. reverse engineer source code intomatrices in order to detect design patterns
by looking at similarity scores between the design patterns and source code [74].

444

This work on design pattern detection is different than what we focus on in this
chapter, as we are concerned with emergent patterns that are not known before
mining takes place, whereas design pattern mining looks explicitly for those
known patterns. Additionally, all these approaches require and work explicitly
on source code, which is not always present in model-based development nor
model-driven approaches.

1.2.1.2 Model Pattern Mining
Model pattern mining involves analyzing software models explicitly, instead
of source code. This is beneficial and relevant for software organizations and
domains that rely heavily, or exclusively, on model-based or model-driven ide-
ologies. This often includes automotive, aerospace, telecommunications, and
other formal and safety-critical domains. This can include modeling languages
such as UML, SysML, Simulink, and others. Model pattern mining is consid-
ered challenging as it often involves the general subgraph isomorphism problem,
which is NP complete [26]. Thus, model pattern mining techniques must ac-
count for this through heuristics, considering alternative forms of analysis, and
other means. Paakki et al. analyze UMLmodels using constraint satisfaction ap-
proaches to detect known architectural patterns, both good and bad [45]. Gupta
et al. employ the state space representation of graphmatching to find instances of
existing UML patterns, represented as graphs, in other UMLmodels [27]. Pande
et al. [46] look for design patterns in UML diagrams of graphical information
systems using graph distances. Bergenti and Poggi [11] detect the Gang of Four
Patterns in UML models by using rule-based techniques, as do Ballis et al [9].
Liutel et al. [43] use answer set programming, a declarative language, to detect
patterns and anti patterns using both facts and rules on those facts. Fourati et al.
use metrics to detect anti patterns on the UML level by looking at the amount of
coupling between objects, the number of methods that can be invoked by a class,
cohesion attributes, and complexity attributes such as imported interfaces [25].
Wenzel performs a fuzzy evaluation of UML models to determine if a model is
exhibiting structural properties indicative of a failed or incomplete application
of a design pattern [76]. Past research conducted by us involved analyzing EMF
models to detect Java EE anti patterns [62]. We also later developed SIMAID to
detect Simulink anti patterns [65, 68] by looking for the intersection of clones of
known anti patterns and target systems. All of these research ideas and tools are
focused on detecting known/existing design patterns and/or anti patterns. The
problem we focus on in this chapter is the detection of emergent patterns.

1.2.2 Model Clone Detection

Software clone detection involves finding identical or similar sets of software
artifacts, which are termed "clones". Similarity is established by a variety of
measures for different tools. Tools often have a similarity threshold criteria
that must be met in order for two or more artifacts to be considered similar

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 5Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 5Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 5

FIGURE 1.1 Example of an Exact/Identical, Type 1, Simulink Model Clone

enough to be identified as a clone. Software clones can exist due to a variety of
reasons include a rush to deliver, bad reuse practices, unfamiliarity with cloning,
and other reasons [39]. Software clones are not necessarily an indicator of
poor software quality [37], and are important to identify regardless [35]. The
majority of research and tooling involving software clone detection has been
focused explicitly on source code clones [51, 53]. Only within the last decade,
has model clone detection research begun to materialize [19]. Model clone
detection is a form of model comparison [67] that discovers clones in software
modeling artifacts. As we will be discussing model clone detection extensively
in this chapter, it is necessary to define model clone types and overview existing
model clone detection approaches.

1.2.2.1 Model Clone Types
Just as code clones can be categorized into different types based on their na-
ture [53], so can model clones. It is generally accepted that there are four types
of model clones, although the specific categorizations vary [4, 69, 70]. We now
overview these as they are important concepts in understanding model clone
detection’s role and potential for model pattern mining. We describe them both
textually and with contrived examples using Matlab Simulink1 models.

1.2.2.1.1 Type 1 - Identical/Exact Model Clones
Identical, or "exact", type 1 model clones are those that are structurally identical
to one another. They are identical except for aesthetic aspects such as layout /
positioning, colour, formatting, et cetera. That is, it ignores those aspects in its
comparison.

We present an example of type 1 identical Simulink model clone in Fig-
ure 1.1. Here we see two models that are completely identically, including
labels, relationships, and block types. These models both take in two inputs,
multiple them, apply a Sine Wave, and output the result.

1.2.2.1.2 Type 2 - Renamed Model Clones
Renamed, type 2 model, clones are those that are identical to each other as
defined for type 1 identical model clones, except that type 2 model clones allow
for differences in names and / or labels, attributes and / or values, and types and

1. https://www.mathworks.com/products/simulink.html

666

FIGURE 1.2 Example of a Renamed, Type 2, Simulink Model Clone

/ or parts [4, 70].
Figure 1.2 presents a contrived example of a type 2 renamed model clone.

These models are identical to one another, except for that we see four of the
five blocks have been renamed by the modeller. Specifically, the two inputs are
renamed, the Interference block is now named Sine Wave, and the output block
is now called Result.

1.2.2.1.3 Type 3 - Near-Miss Model Clones
A near miss, type 3, model clone is a model fragment that is one that is similar
to another model fragment allowing for the same differences as type 2 model
clones and additional structuralmodifications, such as adding or removing blocks
/ parts. Detectors typically use some form of threshold to indicate how "similar"
two model fragments must be in order to be considered a clone. For example,
allowing a percentage difference of 20%, that is, model clones that are 80%
similar to one another.

Figure 1.3 demonstrates a sample type 3, near-miss, model clone. Here we
illustrate two models that are similar to one another. In this case, however, the
modeller made a slight modification compared to the original model at the top
of the figure by adding an additional, Reciprocal Sqrt, block. Thus, a new block
and additional line is present in the bottom model, causing them to be similar
but not identical, near-miss clones. Their similarity percentage would be less
than 100% but likely above a model clone similarity threshold.

1.2.2.1.4 Type 4 - Semantically Equivalent Clones
A type 4, semantically equivalent clone, is one that is structurally different
enough that it may not be similar enough to be identified as a type 3 model
clone but is semantically and behaviorally equivalent [1]. There are variety of
reasons these may exist in software systems, including refactoring, coincidence,
language constraints, and others [1, 70] .

We present a semantically equivalent, type 4, model clone in Figure 1.4. In
this case, we have two models that are semantically equivalent, but potentially
different enough from one another that a model clone detector may not find them
to be within its structural similarity threshold. Specifically, we see a contrast in
number of blocks and types of blocks. Both of these models add the input from
In1 to itself, and take the square root of that number. The upper model does
so using an addition block and (naively) takes the reciprocal of the reciprocal

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 7Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 7Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 7

FIGURE 1.3 Example of a Near-Miss, Type 3, Simulink Model Clone

FIGURE 1.4 Example of a Semantically Equivalent, Type 4, Simulink Model Clone

square root. The bottom model uses Simulink’s sum block to add the input from
In1 to itself and takes the square root of that number directly.

1.2.2.2 Model Clone Detectors
Model clone detectors exist that employ varying means of detection and have
the ability to detect model clones in a variety of modeling languages. Simulink
model clone detector research is the most mature of all modeling languages [3,
18, 47, 48]. However, techniques are emerging for other modeling languages,
including Stateflow models [14, 40] and UML models [6, 70, 71]. Techniques
are also being devised by researchers to detect clones in metamodels, such as
EMF models [7], and for model transformation languages [72].

We now discuss notable model clone detection approaches, which we cate-
gorize based on how they view, and/or the form they consider for comparing,

888

modeling elements.

1.2.2.2.1 Graph-Matching Model Clone Detection
One of the first model clone detectors was ConQAT [19]. It detects Simulink
models by considering their underlying graphical relationships. ConQAT calcu-
lates a graph label that encapsulates the modeling elements’ information deemed
important by them for similarity detection, which is block type specific. They
employ a breadth-first search approach on the graph to find clone pairs, and sub-
sequently cluster their clones. Similarly, Peterson developed the "Naive Clone
Detector", which detects type 1, identical, Simulink model clones employing
graph-based techniques and Simulink domain knowledge [47]. However, Pe-
terson’s approach uses a top-down approach instead of a breadth-first, and is
implemented as a proprietary detector.

Pham et al. developed the eScan and aScan model clone detectors for
detecting exact and approximate model clones, respectively [49]. Their identical
model clones are detected by eScan through a consideration of size and graph
node labels representing topology. To facilitate approximate, type 3, model
clones, they allow for differences in those labels. Both of these tools are no
longer available nor supported.

1.2.2.2.2 Text-based Model Clone Detection
The MQlone tool, developed by Störrle, detects UML model clones. MQlone
works with a slightly different classification of model clone types, using the
class types A, B, C, and D, and is capable of representing renamed clones. In
their approach, they convert the XMI underlying representation of UML CASE
models into Prolog representations2. In doing so, they are able to detect model
clones using similarity metrics and static identifiers. Examples of metrics that
MQlone considers are name distance, containment relationships of models, and
size.

The Simone Simulinkmodel clone detector detects Simulinkmodel clones of
types 1, 2, and 3 [3]. To do so, they focus on the underlying textual representations
of Simulink models, and adapt the tried and tested source code clone detector,
Nicad [54]. It is adapted in such a way that it is model sensitive and considers
Simulink concepts including systems, lines, blocks, and whole models. Based
on industrial feedback and systems being the main unit of organization within
Simulink, Simone detects system level model clones. It has since been extended
to work with Stateflow models [14], and UML behavioral models [6].

2. www.swi-prolog.org

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 9Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 9Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 9

1.3 MCPM - A CONCEPTUAL FRAMEWORK FOR USING MODEL
CLONE DETECTION FOR PATTERN MINING

In this section, we discuss model clone detection’s potential and possible role in
the model analytics task of emergent pattern mining. Based on their work with
industrial partners, Cordy et al. described their exploratory research extracting
emergent patterns in Simulink models [2, 16]. They split up their project into
three phases [16]: discovery, formalization, and application. They do not go
into great detail about the phases themselves, but present their work in realizing
them for their specific project. In this section, we formally refine / transform
these phases to use accepted data mining terminology [23], which we use as the
foundation for the MCPM conceptual framework with the intention that others
can employ model clone detection for emergent pattern mining. To do this, we
generalize these phases as steps within the framework, define the requirements
for each of these steps, and discuss how existing research and tooling satisfies
these requirements including some examples using Simulink models and our
past experiences developing and employing a Simulink model clone detector,
Simone [4]. That is, in each of the respective "Existing Research and Tooling"
subsections for each step we are summarizing how existing work either meets or
does not meet the respective requirements of the respective step.

We present the overall process within our conceptual MCPM framework
in Figure 1.5. In contrast to Cordy’s work [16], we use terms that are more
consistent with that in the data mining and analytics literature [23]. The first
phase in the process is Knowledge Discovery, which we break up into 4 sub steps:
selection, preprocessing, transformation, and data mining through clustering.
This involves employingmodel clone detection to identifymodels that are similar
and cluster them together. The next phase in MCPM is Interpretation, which
corresponds to Cordy’s "formalization" phase. It also contains four sub steps.
Interpretation can sometimes be considered by analysts as part of the knowledge
discovery process. However, in MCPMwe consider it more of a post processing
and visualization step whereby clusters are analyzed by variation detection tools
and techniques to find variation points, and then visualized to analysts. The next
phase, Validation, involves validating the results of both the knowledge discovery
and the interpretation / variation identification. TheApplication phase is the final
phase, which focuses on applying the results of the model pattern mining in a
form that is useful for analysts and end users.

1.3.1 Knowledge Discovery

In the MCPM framework, the knowledge discovery phase involves performing
model clone detection on the models undergoing analysis. Model clone pairs are
not useful in this context by themselves. The end goal of this phase is to yield
not only models clone pairs, but model clone clusters, or model clone classes.

101010

FIGURE 1.5 Overview of the Conceptual MCPM Framework

1.3.1.1 Knowledge Discovery - Requirements
The first requirement for this phase addresses the types of model clones that
a detector is able to identify. Detection of type 1 and type 2 model clones
may be useful for identifying rudimentary patterns from model instances that
are identical or renamed. However, truly emergent and not-readily apparent
model patterns would be discovered through detection of type 3, near-miss,
model clones only, as verified through our experiences working with industrial
partners [3, 16]. Type 4, semantically equivalent, model clones may also prove
interesting in discovering patterns, but would likely be more applicable in refac-
toring scenarios, and would be challenging to parameterize as required in the
next phase of our framework. Thus, a model clone detector would need to be
able to detect near miss, type 3, model clones.

Since model clone pairs themselves are not useful in establishing an emer-
gent pattern, a higher level categorization must take place in the mining phase.
Specifically, a categorization of model clone clusters or classes that identify an
abstraction of similar model clones beyond pairs. Not all code [53] nor model
clone detectors [64] are able to do this. However, model clone clustering and/or
classification is a requirement for a model clone detector to be used within the
MCPM framework.

Scalability is always a concern when it comes to data mining [28]. From
a model clone detection perspective, the more models that can be analyzed
and mined, the more informative and "correct" the results will be. With the
increasing size and complexity of software models being a forefront concern
of model analytics and management, especially for large scale systems, this too
is a key non-functional requirement when evaluating a model clone detectors’
appropriateness for this task.

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 11Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 11Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 11

FIGURE 1.6 Summary of MCPM Knowledge Discovery Phase

1.3.1.2 Knowledge Discovery - Sub Steps
Webreak down this phase into four sub steps based on datamining practices [23].
We outline and summarize the sub steps in Figure 1.6, which we describe herein.

1.3.1.2.1 Selection
The selection step involves choosing what data will be analyzed [23]. For
MCPM, this requires analysts to decide what models should be selected for
emergent pattern mining. Much of this is context dependent. For example, if a
specific organization is trying to codify and explicate emergent patterns based
solely on their organization’s past development for internal future reference, then
they can select their own models. They may additionally, however, choose to
include also models from the same domain, for example, an automotive company
may choose to use their own models and all other automotive models for which
they have access, such as open source models or models/software they have ac-
quired through acquisition agreements. For more general analysis, for example
by an academic or consultant, open source models from Github and Source-
forge, and model-specific repositories such as the Lindholmen Dataset [32] or
MDEForge [10] can be included in the set of data. Additionally, this selection
step is the time for analysts to decide on any subsets (models to include, in the
case of MCPM), or variables within the data [23]. From a model perspective,
this is dependent on the modeling language under consideration. For Simulink,
for example, this can manifest itself into a question of granularity. Do analysts
want to discovery emergent patterns at the model level, system level, or other

121212

level? For UML class models, this may be a question of package level patterns,
relationship level patterns, or interface level patters.

1.3.1.2.2 Preprocessing

The preprocessing step in MCPM is for any models, or their data, that need
to be manipulated and changed before analysis can occur. Each model clone
detector must have the proper preprocessing in place so that, not only can model
clone pairs be discovered, but also clustered. This can include noise reduction,
deciding on what information is necessary to consider or ignore for mining, how
to handle corrupt/missing data, and other aspects. For example, ConQATflattens
all Simulink models to remove their hierarchy and transforms Simulink blocks
into labels that contain enough information necessary for clone detection [19].
The labels are dependent on the Simulink type of block being evaluated. Simone
is another example of a Simulink model clone detector that preprocess its models
and their data. In Simone’s case, they preprocess the underlying Simulink model
textual representations by normalizing, filtering, and sorting the text and its
elements [3]. MQlone pre-processes its UMLmodels of interest by transforming
their XMI representation files into Prolog logic programs.

1.3.1.2.3 Transformation

Fayyad et al. define transformation as the process of reducing and projecting
the data so that useful features can be found through the data mining process to
follow [23]. This can also be thought of in terms of reducing variables under
consideration or finding "invariant" data representations in our context. In the
MCPM framework, transformation entails having a model clone detector use this
step to identify model clone pairs, or some other immediate form, to facilitate
model clone clustering / model clone class identification.

1.3.1.2.4 Data Mining - Clustering

This final step in the knowledge discovery phase involves clustering the model
clones, or other reduced model clone data, into "similar" groups or classes. This
can be accomplished through a variety of clustering algorithms and approaches,
for example those discussed by Bishop [12]. In ConQAT’s case, they discover
model clone classes by devising a graph that represents clone pairs and hav-
ing edges represent potential cloning relationships [19]. They then employ a
combination of union-find structure analysis and graph traversal algorithms to
cluster their clones. Simone generates model clone classes by clustering via
the percentage differences among clone pairs and their sizes and uses connected
component analysis. They then select the largest clone within the model clone
class to use as a demonstration / representation of the class. MQlone does not
perform clustering.

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 13Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 13Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 13

1.3.1.3 Knowledge Discovery - Existing Research and Tooling

When it comes to existing research and tooling, there are different model clone
detectors to consider. ConQAT is currently unable to detect type 3, near-miss,
model clones [63, 69]. So, although they do perform model clone clustering,
they do not fulfill the MCPM requirements of detecting the necessary clone
types. MQlone detects type 3, near-miss, model clones for UML models. While
we did not find any indications that they currently cluster or create model clone
classes [70, 71], there is no evidence suggesting MQlone cannot be extended
to do so. With respect to MQlone’s scalability, they have demonstrated its
performance and ability to handle many clones, noting it is "mildly polynomial"
with respect to model sizes [71]. Simone is another viable candidate for the
MCPM framework. It is able to detect near-miss Simulink model clone pairs,
and also cluster them in to model clone classes. Simone has been shown to
have higher precision and recall than other Simulink model clone detectors [69].
From a scalability perspective, large model sets including industrial automotive
sets and open-source systems with hundreds of Simulink systems were processed
in minutes [3, 69].

1.3.2 Interpretation through Variation

While these model clone classes can be thought of as direct representations of
emergent model patterns, it still lacks applicability in that the patterns have not
been explicated nor parameterized [16]. That is, we have examples of the pattern,
but not its general form or how it can be used.

One illustration of this shortcoming is shown by the clone class navigation
and visualization tool SimNav [50]. SimNav is a tool that is capable of inter-
preting the clone detection results of Simone and visualizing them directly in
the Simulink environment for developers to view and interact with the identified
classes. However, it still lacks a direct representation of variability. Figure 1.7
demonstrates SimNav’s ability to select and display a model clone class to users,
who are are still left with the specific task of determining if a pattern exists, and,
if so, how it can be used or generalized.

1.3.2.1 Interpretation through Variation - Requirements

In order to effectively interpret model clone detection results in a meaningful
manner for emergent pattern detection, any given approach must be able to apply
some method to model variability explicitly. It is not sufficient to highlight that
variability exists within amodel cluster; an approachmust provide representation
of variability. This requirement can be accomplished in two main ways: 1) the
construction of a common set of elements to represent the base pattern (elements
not included in this base set should be marked as variants), or 2) the explicit
marking of variation points in each model instance. Essentially, both approaches
involve the tagging of the model, either in the model itself or some newly created

141414

FIGURE 1.7 SimNav showing a detected clone class with two instances

variation model, to identify common and/or variable model elements.
The second requirement of interpretingmodel clone classes through variation

is the ability to apply the variability patterns in a useful manner. One of the
main applications of emergent model patterns is the ability to consolidate large
numbers of similar, but not necessarily exact, models into one model file to
address model maintenance issues. By representing all possible variants of
a pattern in one single model file, model maintenance teams are required to
maintain one model only now as opposed to many different instances of an
observed pattern, which may be spread over many different files at different
levels of hierarchies within the models.

The third requirement relates to scalability. Any appropriate approach suit-
able for the MCPM framework should generalize to both large models and large
sets of models. A pattern between a given clone pair does not sufficiently im-
prove interpretation. In contrast, a large set of instances in a model clone class,
summarized by a single pattern, can drastically improve the maintenance and
understanding of a large-scale system through model instance replacements.

In summary, the following are the requirements we have conceived of for the
Interpretation through Validation phase of the MCPM framework. We propose
that any candidate must demonstrate the ability to

1. model variability explicitly
2. apply variability patterns in a useful manner
3. scale to large model sets

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 15Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 15Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 15

FIGURE 1.8 The Four Sub Steps to the Interpretation through Variation Phase of MCPM

1.3.2.2 Interpretation through Variation - Sub Steps
Based on these requirements, we further break down this phase of MCPM into
4 distinct steps as seen in Figure 1.8, which we further describe in this section.
We use a simple example using Simulink models to demonstrate these steps.

1.3.2.2.1 Cluster Collection
The first step is to collect the model clone clusters in such a manner that each
model instance is grouped along with all related instances, and all model in-
stances are available for further analysis and manipulation. Since this phase may
involve modifications to the models themselves, it may be prudent and/or nec-
essary to work on copies of the original models to avoid unwanted overwriting
of original artifacts. As we mentioned in requirement number 3 of this phase,
the automatic clustering technique and tooling must be scalable enough for large
model sets.

The running example we employ to illustrate this phase consists of four
Simulink models. Each model takes in two numbers as input, performs some
calculation (the variance), and produces an output. The pattern and variance are
fairly obvious in the example but the process and techniques apply generally to
any complexity of models. We introduce the four models in Figure 1.9.

1.3.2.2.2 Similarity Comparison
Within each collected clone cluster, the first goal is to determine the elements
common to all instances. These form the basis of the pattern. At a high

161616

FIGURE 1.9 Running Example: Four Model Instances in the Same Model Clone Cluster

FIGURE 1.10 Running Example: The Superset of Model Elements in the Cluster of Instances

level, this is a simple application of model comparison tools to determine these
commonalities. Model comparison involves identifying the similarities and
differences among a set of models [38]. There are many approaches and tools
for automatic model comparison to employ in this step [64, 67]. However, an
approach or tool must be selected that is able to identify all the similarities
explicitly, rather than differences only, and must be scalable, as we mentioned in
our third requirement of this phase.

Independent of the chosen model comparison technique, the result of this
comparison is a superset ofmodel elements that are present in all model instances
in the cluster. Regardless of the eventual application of each emergent pattern,
this informationmaybe of use to developers and analysts. TheMCPMframework
allows flexibility in what it considers a match, as it can accept a threshold of
similarity between blocks. The default case would be 100% similarity, but there
are potential applications where a lower similarity threshold may be desirable,
such as renamed blocks or other near-miss scenarios. For example Schlie et al
use 95% as their base threshold for similarity [57].

In our running example, the input and output ports, along with the associated
connector lines, will be considered the set of similar elements to all instances,
forming our superset, as we demonstrate in Figure 1.10.

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 17Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 17Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 17

FIGURE 1.11 Running Example: The Variable Model Elements across the Cluster of Instances

1.3.2.2.3 Variation Tagging
In any particular instance model within a model clone cluster, any element that
is not part of the previously identified superset of commonalities by the MCPM
framework is a candidate for variation, which must be tagged through some
method. This relates to requirement number 1 of being able to model variability
explicitly. Any element that is not common to all instances represents one
particular configuration of the pattern as observed by the respective model clone
detector employed in the previous phase.

There are multiple forms we recommend for use within the MCPM frame-
work. It can either be 1) based on the presence or absence of a model element,
or 2) it can be based on a relative similarity. If the tagging is based on presence
or absence, each different element would present a new variant of the pattern.
If analysis reveals there is similarity (below the threshold chosen for inclusion
in the superset of similar elements) between elements in two or more instances,
these can be tagged by the framework implementation as alternatives rather than
new variants. In both cases, variation tagging would, ideally, be a fully, but
potentially semi, automatic process in order for it to scale to large model sets.

In our running example, the four mathematical operators, addition, subtrac-
tion, product, division, are the only elements not tagged as part of the similarity
superset. Thus, they are the logical candidates for variation tagging. At a mini-
mum each are tagged as a new variation of themodel pattern due to being present.
However, after additional analysis of the properties of the blocks, mainly number
of inputs and outputs in this example, it can be reasonably concluded that each of
them are similar enough to be considered variants of the same operation. Thus
we identify four variants, as we exhibit in Figure 1.11.

1.3.2.2.4 Pattern Explication
The final sub step in this phase involves automatically explicating the varia-
tion/pattern in a meaningful way. This relates to the second requirement we
identified for this phase. While this can take many forms in practice, each model
pattern instance is an explication of the pattern, which as a minimum must
demonstrate the existence of a base pattern and highlight the variance in some
manner. The two main methods of explication within the MCPM framework are
visualization and representation.

The first method is to create a visualization of themodel pattern that identifies
both the common elements and its variation points. In its simplest form, this is

181818

FIGURE 1.12 Running Example: A Sample Visualization of Variance

a merge of all model elements into a single model with duplicates of common
elements removed. For our running example, a visualization of the pattern may
appear as we show in Figure 1.12. This Simulink model contains all 4 variations
of the pattern’s instances. This abstraction is very explicit, and if implemented
within the Simulink environment can allow modeller interaction with the pattern
by selecting a specific instance.

The second method of explicating model patterns, which is more pragmatic,
is to represent the pattern in some new format from which it can be validated
and applied by analysts. In the next section we will discuss some existing
implementations for doing this, but, at a high level, the goal is the creation of a
single model file capable or representing the pattern and its variance. One such
approach, which we apply to the running example, was introduced by us in our
past work [5] in which we use Simulink Variant Subsystem Blocks3. Essentially
all variants are contained in a special Simulink variant block that will connect
the desired variant based on an environment variable selection only. For the
running example, we present the resulting model in Figure 1.13. The Variant
Subsystem block will contain four variants that can be selected by a modeller.
Essentially, and in general, the model pattern is the whole model, including the
commonalities, represented by all the static blocks, and the variants, represented
by anything stored inside variant subsystem blocks.

1.3.2.3 Interpretation through Variation - Existing Research and Tooling
There exist several approaches that go beyond the identification of patterns shown
in the Knowledge Discovery phase. These approaches make use of clustering
and differencing techniques to explicitly represent variability in some form. It
is from these approaches that we draw motivation for the Interpretation phase of
MCPM.

Wille et al. apply variability mining to generic block-based modeling lan-
guages [79]. Specifically, they focus their work on Simulink and state charts.

3. https://www.mathworks.com/help/simulink/examples/variant-subsystems.html

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 19Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 19Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 19

FIGURE 1.13 Running Example: A Sample Representation of Variance using Simulink Variant
Subsystem Blocks

This approach is preliminary work that was later expanded upon by Schlie et
al. in their technique to represent variability in Simulink models [57]. Their
method proposes the use of a family model [33], wherein model elements are
tagged as "mandatory" if they appear in all variants, "alternative" if they rep-
resent a variation point, and "optional" if they appear in one variant with no
counterpart in the other. This is very similar to feature models in product line
engineering [17]. Their Family Mining Framework consists of three distinct
phases: compare, match, and merge. During the compare phase, models are
compared using a comparison technique to generate a list of Compare Elements
(CE), which are essentially a pair of similar elements with a normalized similar-
ity value. During thematch phase, a subset of all CEs is chosen by the algorithm
as those that feature the best matches. Finally, during the merge phase, the mod-
els are merged into a single model based on a user specified mapping function
which determines for each element if it is mandatory, alternative, or optional.
Schlie et al. also present an expansion of this work where they apply the Family
Mining Framework to Reverse Signal Propagation Analysis (RSPA) [56]. RSPA
consists of three phases: signal set generation, comparing and clustering, and
cluster optimization. During signal set generation, their approach traverses each
hierarchical layer of the model to generate a set of outgoing signals present on
that layer. These signal sets are then used as a basis for comparing and cluster-
ing, in which blocks associated with varying signals are clustered into sets of
preliminary clusters. These preliminary clusters may contain some intersections,
and thus cluster optimization is used to improve the clustering iteratively until
no more intersections exist. Essentially, rather than relying on other similarity
metrics to cluster blocks together, RSPA uses the unique signals and propagates
them through the models at various levels to determine similarity and clustering,
which is then used to determine variation points. Willie et al. [78] also devised
an approach for configurable detection of variability relations for model variants
at the block level. Their work would be helpful in an MCPM framework by
providing guidelines for variability mining interpretation and preprocessing.

Our past work involved developing a method of using detected clusters of

202020

clones (clone classes) to model variation points in Simulink models [5]. Our
approach asserts that a clone class with limited variability between each individ-
ual model is best represented by a single model using built-in Simulink Variant
Subsystem Blocks for each variation point. Each original version of the model
can then be recreated by a modeler by setting environment variables to configure
each choice to match the original subsystem, while allowing maintenance to be
performed on one model file instead of the number of models originally con-
tained in the detected clone class. This approach accounts for five different types
of variability: block, input/output, function, layout, and subsystem naming, with
each being handled in a similar manner. This technique can be applied to the
model clone class detected and shown in Figure 1.7 to create a single model
file capable of representing both models. The original variance between the two
instances can be seen on the left of the models; each has its own method of pro-
ducing input signals. We present the resulting variability model in Figure 1.14,
with each expanded subsystem expanded in detail. One of the main advantages
of this technique is its ability to scale to large-scale systems, both in terms of
model complexity and size of model sets. The other techniques we discussed
were applied mainly to pairwise variants, whereas this technique can combine
arbitrarily large sets of model variants into a single variability model.

1.3.3 Validation

This phase of the conceptual MCPM framework involves framework imple-
menters validating the results of the previous two phases. Specifically, it is
necessary to validate the results of the model clone detection and clustering, and
the pattern interpretation of those clusters. Problems in mining can sometimes
produce results that seem to be predictive and useful, but actually are misleading
and cannot be reproduced [31]. This can occur at various phases within pattern
mining, so we thus evaluate each phase.

1.3.3.1 Validation of the Model Clone Pair and Model Clone Clusters
As model clone detection tooling and research is still emerging, there are limited
techniques for evaluating and validating model clone detection results. In our
past work, we developed a framework, MuMonDE, for evaluating model clone
detectors that employs automatic mutation analysis to ascertain correctness and
recall [69]. It mutates the models using a predefined mutation taxonomy [66] to
find out if the model clones that should be detected are detected. Currently it has
been employed by researchers to evaluate Simulink model clone detectors only.
Störrle has performed some model clone evaluation experiments of their own to
evaluate MQlone by manually seeding clones within existing model bases and
seeing if they are detected [71]. Regardless of how validation is performed by an
MCPM framework implementer, the general idea is to ensure the model clone
detector is exhibiting high precision and recall in their model clone detection
executions.

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 21Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 21Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 21

FIGURE 1.14 Applying Alalfi et al’s. technique [5] to represent the variants in the model clone
class shown in Figure 1.7

222222

TABLE 1.1 Running Example: Sample Test Case Values for 4 Math Function Models
Addition Test Cases Subtraction Test Cases

Input 1 Input 2 Output Input 1 Input 2 Output
0 1 1 0 0 0
1 1 2 1 0 1
2 1 3 2 0 2

... ...
Multiplication Test Cases Division Test Cases

Input 1 Input 2 Output Input 1 Input 2 Output
2 1 2 1 1 1
2 2 4 2 1 2
2 3 6 3 1 3

... ...

1.3.3.2 Validation of the Interpretation through Variation
With respect to validating results obtained by interpreting the observed variations
within the MCPM framework, there are two main approaches that can be taken:
a test-driven approach and a reverse engineering approach, both of which we
describe in detail.

The test-driven approach applies mainly to any application of representation
of variation, that is, any time a variant model is created regardless of technologies
used. The general idea is that if a set of tests exist for the original corpus of
models prior to model clone detection, clustering, and variant modeling, the
newly created variant model should be capable of being configured in such a
way so as to successfully pass each of the original test cases. This is analogous to
the idea of finding semantically equivalent source code via testing [34]. Consider
the running example from the previous section. Each model would have its own
set of unique test cases to ensure it functions as required, and would have been
able to independently pass all of the required tests. Table 1.1 provides a small
set of example tests. After the creation of a variant model, for example the one
we presented in Figure 1.13, to validate the correctness of the variant model, it
must be able to be configured by a tester to be able to pass all four sets of tests.
While this is not a guarantee of correctness of the newly created variant model, it
provides a high level of confidence in its ability to represent the original behavior
of all original pattern elements.

The second method of validating the results of interpretation through vari-
ation within the MCPM is through the use of reverse engineering techniques.
The goal of this type of validation is to be able to accurately recreate the original
models that were used to create the resulting pattern. For example, by means
of model transformations to recreate the original models. This can result in a
high level of confidence in the representation of the pattern. The added benefit
of using reverse engineering to validate pattern representation is that it applies
to both representations as a variant model, as well as a more simplified visu-
alization of variance. The reverse engineering technique works by applying,

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 23Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 23Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 23

in reverse order, the same steps we recommended to create the representation
or visualization. If it is possible to return to the original models that form the
pattern, it becomes evident the new model pattern representation/visualization
has not lost any of its original semantics. However, if it is not possible to obtain
the original models from the resulting visualization or representation, this means
there might be some loss of information, thus reducing the overall confidence in
the interpretation of the pattern.

While there may exist other application and domain specific methods of val-
idating variation results, the two techniques we discussed here present methods
that generalize to most cases. Further, these techniques are sufficiently scalable
to apply to large scale systems without additional effort, provided the required
inputs (test files or list of applied steps) exist previously.

1.3.3.3 Validation of Pattern Quality
A potential third area of validation is the evaluation of the quality of any detected
patterns. The previous validations deal largely with correctness and the ability
to express patterns. However, the “quality” of the patterns is still unknown to
analysts. In its current state, we do not consider this aspect of validation within
scope for theMCPM conceptual framework as theMCPM is currently concerned
mainly with identifying emergent patterns and expressing them in a form con-
ducive to evaluation and application. Quality evaluation and filtering, sorting,
and/or ranking of patterns is interesting from a post processing perspective, but
not part of the core MCPM.

1.3.4 Application

While the identification of valid emergent model patterns through model clone
detection presents useful information, the MCPM framework posits that a par-
ticular application of the obtained knowledge is important to solidify its con-
tributions. As such, this section presents our recommendations on potential
applications of findings in industrial settings, including integration into work
flows and tool chains.

The first potential application, and perhaps the simplest, is the incorporation
of pattern visualization into the work flow of model development and model-
driven engineering. Being aware of the existence ofmodel patterns in a collection
of models yields its own benefits in that developers are able to draw reasonable
conclusions about their presence and adapt usual working conditions to make
changes. While this seems abstract, it fits the goals of the MCPM framework
and allows the domain experts to use the knowledge to improve their models as
appropriate. Regarding pattern usefulness, the objective of MCPM is solely to
identify emergent patterns. Thus, evaluation of the usefulness of the patterns that
emerge is beyond the scope of the framework. Analysts can perform filtering,
ranking, and sorting of the emergent patters depending on their intended use
cases. One of the primaryways this information is applied is via the identification

242424

of potential faults. In some situations, an expert can be left asking the question
”Is this variance point intentional, or have we found a fault?”. By applying the
MCPM framework to a project periodically, relevant information can be revealed
to improve overall software quality.

The second application combats the model management problem discussed
earlier, and that is one of the focuses of this book. Determining the existence of
model patterns inmodel sets provides candidates formodelmerging and retaining
variance through metrics, allowing analysts to maintain only one model rather
than the large number of original models. This process takes numerous forms
as we discussed, but generally presents the outcome of a reduced number of
models that are still capable of expressing the original functionality of the full
set of models. Within Simulink, for example, this can be done through the
use of Subsystem Variant blocks [5] or by creating tagged models with aspects
similar to software product lines [57]. Regardless of approach, the introduction
of variant models decreases the total number of models in the set, allowing for
improved maintainability.

1.4 SUMMARY OF CHALLENGES AND FUTURE DIRECTIONS

The main challenges faced by the MCPM framework are the full automation of
variant model creation, effective visualization and explication of model patterns,
post validation of emergent pattern quality, and the practitioner adoption issue.
Each issue presents an opportunity for future work, which we discuss further.

1.4.1 Automatic Variant Model Creation

We previously developed an approach [5] that is only semi-automated as a proof
of concept. However, there is still no current method of creating a full set
of variability models that work directly within Simulink. While the approach
presents meaningful results, the manual interaction creates opportunity for error,
and does not scalewell to large scale systems, where the approach ismost needed.

Schlie et al. present an approach [57] that deals with tagging elements in
a Family model as mandatory, alternative, or optional. This does not translate
directly to a Simulink model that can be used explicitly. Rather, it is merely
an additional representation to present variability. While this approach scales
better than the previous one, the separation from the application domain by
representing the models outside of Simulink poses a pragmatic problem.

Both of these approaches demonstrate promise in variant modeling, however
the development of a fully automated approach capable of scaling to large scale
systems is still necessary and an open challenge to advance the application of
the MCPM framework.

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 25Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 25Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 25

1.4.2 Effective Visualization/Explication

In order to use the results of model clone detection to find model patterns, an
effective way of explicating these model patterns is needed. When working with
experts in graphical modeling, this likely will take the form of visualization in
order to maintain the higher level abstractions afforded by modeling. However,
there is no strong forerunner in the visualization of explicitmodel patterns. While
we presented SimNav [50] as a method of visualizing the model clone classes,
the approach focuses too specifically on clone classes, and not the underlying
patterns.

In order to advance the application of the MCPM framework, further work in
the effective visualization and explication of model patterns is required, specifi-
cally with some form of automated tool support.

1.4.3 Validating Pattern Quality

Currently, the MCPM framework does not address the quality of the observed
patterns. Within the framework, detected patterns are always included in the
resulting pattern set, as they are emergent. However this may not always be the
best course of action. In order to improve the effectiveness of applying patterns,
it may be necessary to include a post processing method for validating pattern
quality as part of the MCPM framework in its future implementations.

1.4.4 Practitioner Adoption

The final challenge faced currently by the MCPM framework concept is the
potential reluctance of practitioners to adopt elements of the MCPM framework.
While this is a problem that is faced in many domains, and possibly related to
the solutions to the previous two issues, it is still worth noting as an ongoing
challenge in the field. Industrial developers of models need to be on board with
the concept of applying model clone detection to observe and make use of model
patterns for the framework to advance and gain traction. Whilewe do not have any
specific approaches to overcome this hurdle, it is a challenge to the community
to work closely with practitioners to ensure their buy-in and adoption of research
technologies and tooling. One aspect of this challenge would be some sort of
ranking or feedback system associated with any discovered emergent patterns to
ensure quality. That is, a way of having practitioners review and rate the patterns
to help with "good" and "bad" emergent pattern identification.

1.5 CONCLUSION

In this chapter, we have investigated the possibility of employing model clone
detection as a tool for extracting emergent model patterns from large model
repositories. We defined a conceptual framework, MCPM, that can be realized
and used by analysts and researchers to follow in order to use model clone

262626

detection for this purpose. We break down the details of each of MCPM’s
four phases, provide examples to follow, and describe how current research and
tooling fits its requirements. We additionally outline current challenges to help
set the path for researchers interested in this area. It is our intention for this
chapter to help pave the way for more advanced model analytics allowing for
the identification of emergent model patterns in large software systems, thus
improving model driven engineering on the whole.

References

[1] Bakr Al-Batran, Bernhard Schätz, and Benjamin Hummel. Semantic clone detection for
model-based development of embedded systems. In International Conference onModel Driven
Engineering Languages and Systems, pages 258–272. Springer, 2011.

[2] Manar H Alalfi, James R Cordy, and Thomas R Dean. Analysis and clustering of model
clones: An automotive industrial experience. In Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on,
pages 375–378. IEEE, 2014.

[3] Manar H. Alalfi, James R. Cordy, Thomas R. Dean, Matthew Stephan, and Andrew Stevenson.
Models are code too: Near-miss clone detection for Simulinkmodels. In ICSM, pages 295–304,
2012.

[4] Manar H Alalfi, James R Cordy, Thomas R Dean, Matthew Stephan, and Andrew Stevenson.
Near-miss model clone detection for simulink models. In Proceedings of the 6th International
Workshop on Software Clones, pages 78–79. IEEE Press, 2012.

[5] Manar H Alalfi, Eric J Rapos, Andrew Stevenson, Matthew Stephan, Thomas R Dean, and
James R Cordy. Semi-automatic identification and representation of subsystem variability in
simulink models. In Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, pages 486–490. IEEE, 2014.

[6] Elizabeth Antony, Manar H. Alalfi, and James R. Cordy. An Approach to Clone Detection
in Behavioural Models. In International Working Conference in Reverse Engineering, pages
472–476, 2013.

[7] Ö Babur. Clone detection for ecore metamodels using n-grams. In International Conference
on Model-Driven Engineering and Software Development, 2018.

[8] Zsolt Balanyi and Rudolf Ferenc. Mining design patterns from c++ source code. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference on, pages 305–314.
IEEE, 2003.

[9] Demis Ballis, Andrea Baruzzo, and Marco Comini. A rule-based method to match software
patterns against uml models. Electronic Notes in Theoretical Computer Science, 219:51–66,
2008.

[10] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto Di Salle, Ludovico Iovino,
and Alfonso Pierantonio. MDEForge: an Extensible Web-Based Modeling Platform. In
International Workshop on Model-Driven Engineering on and for the Cloud, pages 66–75,
2014.

[11] Federico Bergenti and Agostino Poggi. Idea: A design assistant based on automatic design
pattern detection. InProceedings of the 12th international conference on Software Engineering
and Knowledge Engineering, pages 336–343. Springer-Verlag, 2000.

[12] Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[13] William H Brown, Raphael C Malveau, Hays W McCormick, and Thomas J Mowbray. An-

tiPatterns: refactoring software, architectures, and projects in crisis. JohnWiley & Sons, Inc.,
1998.

[14] Jian Chen, Thomas R Dean, and Manar H Alalfi. Clone detection in matlab stateflow models.
Software Quality Journal, 24(4):917–946, 2016.

[15] James O Coplien. Software design patterns: common questions and answers. The Patterns
Handbook: Techniques, Strategies, and Applications, pages 311–320, 1998.

27

282828

[16] James R Cordy. Submodel pattern extraction for simulink models. In International Software
Product Line Conference, pages 7–10, 2013.

[17] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration using feature
models. In International Conference on Software Product Lines, pages 266–283. Springer,
2004.

[18] F. Deissenboeck, B. Hummel, E. Juergens, B. Schaetz, S.Wagner, J.-F. Girard, and S. Teuchart.
Clone detection in automotive model-based development. In ICSE, pages 603–612, 2009.

[19] Florian Deissenboeck, Benjamin Hummel, Elmar Jürgens, Bernhard Schätz, Stefan Wagner,
Jean-François Girard, and Stefan Teuchert. Clone detection in automotive model-based de-
velopment. In 30th international conference on Software engineering, pages 603–612. ACM,
2008.

[20] Patricia Derler, Edward A Lee, and Alberto Sangiovanni Vincentelli. Modeling cyber–physical
systems. Proceedings of the IEEE, 100(1):13–28, 2012.

[21] Giuseppe Di Fatta, Stefan Leue, and Evghenia Stegantova. Discriminative pattern mining in
software fault detection. In Proceedings of the 3rd international workshop on Software quality
assurance, pages 62–69. ACM, 2006.

[22] Jing Dong, Yajing Zhao, and Tu Peng. A review of design pattern mining techniques. In-
ternational Journal of Software Engineering and Knowledge Engineering, 19(06):823–855,
2009.

[23] Usama M Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, et al. Knowledge discovery
and data mining: Towards a unifying framework. In KDD, volume 96, pages 82–88, 1996.

[24] Eduardo Fernandez-Buglioni. Security patterns in practice: designing secure architectures
using software patterns. John Wiley & Sons, 2013.

[25] Rahma Fourati, Nadia Bouassida, and Hanêne Ben Abdallah. A metric-based approach for
anti-pattern detection in uml designs. In Computer and Information Science 2011, pages
17–33. Springer, 2011.

[26] Michael R Garey. A guide to the theory of np-completeness. Computers and intractability,
1979.

[27] Manjari Gupta, Rajwant Singh Rao, Akshara Pande, and AK Tripathi. Design pattern mining
using state space representation of graph matching. In International Conference on Computer
Science and Information Technology, pages 318–328. Springer, 2011.

[28] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier,
2011.

[29] Neil B Harrison, Paris Avgeriou, and Uwe Zdun. Using patterns to capture architectural
decisions. IEEE software, 24(4), 2007.

[30] Ahmed E Hassan. The road ahead for mining software repositories. In Frontiers of Software
Maintenance, 2008. FoSM 2008., pages 48–57. IEEE, 2008.

[31] Douglas M Hawkins. The problem of overfitting. Journal of chemical information and
computer sciences, 44(1):1–12, 2004.

[32] Regina Hebig, Truong Ho Quang, Michel RV Chaudron, Gregorio Robles, and Miguel Angel
Fernandez. The quest for open source projects that use uml: mining github. In International
Conference on Model Driven Engineering Languages and Systems, pages 173–183. ACM,
2016.

[33] Sönke Holthusen, David Wille, Christoph Legat, Simon Beddig, Ina Schaefer, and Birgit
Vogel-Heuser. Family model mining for function block diagrams in automation software. In
Proceedings of the 18th International Software Product Line Conference: Companion Volume
for Workshops, Demonstrations and Tools - Volume 2, pages 36–43, 2014.

[34] Lingxiao Jiang and Zhendong Su. Automatic mining of functionally equivalent code fragments

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 29Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 29Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 29

via random testing. In Proceedings of the eighteenth international symposium on Software
testing and analysis, pages 81–92. ACM, 2009.

[35] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do code
clones matter? In 31st International Conference on Software Engineering, pages 485–495.
IEEE, 2009.

[36] Huzefa Kagdi, Jonathan I Maletic, and Bonita Sharif. Mining software repositories for trace-
ability links. InProgramComprehension, 2007. ICPC’07. 15th IEEE International Conference
on, pages 145–154. IEEE, 2007.

[37] Cory Kapser and Michael W Godfrey. " cloning considered harmful" considered harmful. In
Reverse Engineering, 2006. WCRE’06. 13th Working Conference on, pages 19–28. Citeseer,
2006.

[38] D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Model comparison: a foundation for model
composition and model transformation testing. In Proceedings of the International Workshop
on Global Integrated Model Management, pages 13–20. ACM, 2006.

[39] R. Koschke. Survey of research on software clones. Duplication, Redundancy, and Similarity
in Software, pages 1–24, 2006.

[40] Mythili Aravida Kumar. Efficient weight assignment method for detection of clones in state
flow diagrams. Journal of Software Engineering Research and Practices, 4(2):12–16, 2014.

[41] Jürgen Lind. Patterns in agent-oriented software engineering. In International Workshop on
Agent-Oriented Software Engineering, pages 47–58. Springer, 2002.

[42] Benjamin Livshits and Thomas Zimmermann. Dynamine: finding common error patterns by
mining software revision histories. ACM SIGSOFT Software Engineering Notes, 30(5):296–
305, 2005.

[43] Gaurab Luitel, Matthew Stephan, and Daniela Inclezan. Model Level Design Pattern Instance
DetectionUsingAnswer Set Programming. In InternationalWorkshop onModeling in Software
Engineering (MISE), MiSE ’16, pages 13–19, New York, NY, USA, 2016. ACM.

[44] Robert C Martin. Agile software development: principles, patterns, and practices. Prentice
Hall, 2002.

[45] Jukka Paakki, Anssi Karhinen, Juha Gustafsson, Lilli Nenonen, and A Inkeri Verkamo. Soft-
ware metrics by architectural pattern mining. In Proceedings of the International Conference
on Software: Theory and Practice (16th IFIP World Computer Congress), pages 325–332.
Kluwer Beijing, China, 2000.

[46] Akshara Pande, Manjari Gupta, and AK Tripathi. Design pattern mining for gis application
using graph matching techniques. InComputer Science and Information Technology (ICCSIT),
2010 3rd IEEE International Conference on, volume 3, pages 477–482. IEEE, 2010.

[47] Hauke Petersen. Clone detection in Matlab Simulink models. Master’s thesis, Technical
University of Denmark, 2012, iMM-M. Sc.-2012-02, 2012.

[48] NamHPham, HoanAnhNguyen, TungThanhNguyen, JafarMAl-Kofahi, andTienNNguyen.
Complete and accurate clone detection in graph-based models. In ICSE, pages 276–286, 2009.

[49] N.H. Pham, H.A. Nguyen, T.T. Nguyen, J.M. Al-Kofahi, and T.N. Nguyen. Complete and
accurate clone detection in graph-based models. In International Conference on Software
Engineering (ICSE), pages 276–286, 2009.

[50] E. J. Rapos, A. Stevenson, M. H. Alalfi, and J. R. Cordy. Simnav: Simulink navigation of
model clone classes. In 2015 IEEE 15th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 241–246, 2015.

[51] Dhavleesh Rattan, Rajesh Bhatia, andManinder Singh. Software clone detection: A systematic
review. Information and Software Technology, 55(7):1165–1199, 2013.

[52] DirkRiehle andHeinz Züllighoven. Understanding and using patterns in software development.

303030

Theory and practice of object systems, 2(1):3–13, 1996.
[53] Chanchal Kumar Roy and James R Cordy. A survey on software clone detection research.

QueenâĂŹs School of Computing TR, 541(115):64–68, 2007.
[54] C.K. Roy and J.R. Cordy. NICAD: Accurate detection of near-miss intentional clones using

flexible pretty-printing and code normalization. In ICPC, pages 172–181, 2008.
[55] H. Safyallah andK. Sartipi. Dynamic analysis of software systems using execution patternmin-

ing. In 14th IEEE International Conference on Program Comprehension(ICPC), volume 00,
pages 84–88, 06 2006.

[56] Alexander Schlie, DavidWille, Loek Cleophas, and Ina Schaefer. Clustering variation points in
matlab/simulink models using reverse signal propagation analysis. In International Conference
on Software Reuse, pages 77–94. Springer, 2017.

[57] Alexander Schlie, David Wille, Sandro Schulze, Loek Cleophas, and Ina Schaefer. Detecting
variability in matlab/simulink models: an industry-inspired technique and its evaluation. In
Proceedings of the 21st International Systems and Software Product Line Conference-Volume
A, pages 215–224. ACM, 2017.

[58] Douglas C Schmidt, Mohamed Fayad, and Ralph E Johnson. Software patterns. Communica-
tions of the ACM, 39(10):37–39, 1996.

[59] Abhishek B Sharma, Franjo Ivančić, Alexandru Niculescu-Mizil, Haifeng Chen, and Guofei
Jiang. Modeling and analytics for cyber-physical systems in the age of big data. ACM
SIGMETRICS Performance Evaluation Review, 41(4):74–77, 2014.

[60] Nija Shi and Ronald A Olsson. Reverse engineering of design patterns from java source code.
In Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM International Conference
on, pages 123–134. IEEE, 2006.

[61] Michael Stal. Using architectural patterns and blueprints for service-oriented architecture.
IEEE software, 23(2):54–61, 2006.

[62] M. Stephan. Detection of Java EE EJB antipattern instances using framework-specific models.
Master’s thesis, University of Waterloo, 2009.

[63] M. Stephan, M.H. Alafi, A. Stevenson, and J.R. Cordy. Towards qualitative comparison of
simulink model clone detection approaches. In International Workshop on Software Clones
(IWSC), pages 84–85, 2012.

[64] M. Stephan and J. R. Cordy. A survey of methods and applications of model comparison.
Technical Report 2011-582 Rev. 3, Queen’s University, 2012.

[65] M. Stephan and J. R. Cordy. Identification of Simulink model antipattern instances using
model clone detection. In International Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 276–285, Sept 2015.

[66] Matthew Stephan, Manar Alalfi, and James R. Cordy. Towards a taxonomy for simulink model
mutations. In International Conference on Software Testing, Verification, and Validation 2014
(ICST) – Mutation Workshop, pages 206–215, 2014.

[67] Matthew Stephan and James R Cordy. A survey of model comparison approaches and appli-
cations. In Modelsward, pages 265–277, 2013.

[68] Matthew Stephan and James R. Cordy. Identifying instances of model design patterns and
antipatterns using model clone detection. In International Workshop on Modelling in Software
Engineering, pages 48–53, 2015.

[69] Matthew Stephan and James R Cordy. Mumonde: A framework for evaluating model clone
detectors using model mutation analysis. Software Testing, Verification and Reliability, page
e1669, 2018.

[70] Harald Störrle. Towards clone detection in uml domain models. Software & Systems Modeling,
12(2):307–329, 2013.

Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 31Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 31Model Clone Detection and its role in Emergent Model Pattern Mining Chapter | 1 31

[71] Harald Störrle. Effective and efficient model clone detection. In Software, Services, and
Systems, pages 440–457. Springer, 2015.

[72] Daniel Strüber, Vlad Acreţoaie, and Jennifer Plöger. Model clone detection for rule-based
model transformation languages. Software & Systems Modeling, pages 1–22, 2017.

[73] Paolo Tonella and Mariano Ceccato. Aspect mining through the formal concept analysis of
execution traces. In 11th Working Conference on Reverse Engineering, pages 112–121. IEEE,
2004.

[74] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros T Halkidis.
Design pattern detection using similarity scoring. IEEE transactions on software engineering,
32(11), 2006.

[75] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. Design patterns: Elements
of reusable object-oriented software. Reading: Addison-Wesley, 49(120):11, 1995.

[76] Sven Wenzel. Automatic detection of incomplete instances of structural patterns in uml class
diagrams. Nordic Journal of Computing, 12(4):379, 2005.

[77] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in model-driven
engineering. IEEE software, 31(3):79–85, 2014.

[78] David Wille, Önder Babur, Loek Cleophas, Christoph Seidl, Mark van den Brand, and Ina
Schaefer. Improving custom-tailored variability mining using outlier and cluster detection.
Science of Computer Programming, 163:62–84, 2018.

[79] David Wille, Sandro Schulze, Christoph Seidl, and Ina Schaefer. Custom-tailored variabil-
ity mining for block-based languages. In Software Analysis, Evolution, and Reengineering
(SANER), 2016 IEEE 23rd International Conference on, volume 1, pages 271–282. IEEE,
2016.

[80] Tao Xie and Jian Pei. Mapo: Mining api usages from open source repositories. In Proceedings
of the 2006 international workshop onMining software repositories, pages 54–57. ACM, 2006.

[81] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie Van Deursen. Mining software
repositories to study co-evolution of production & test code. In Software Testing, Verification,
and Validation, 2008 1st International Conference on, pages 220–229. IEEE, 2008.

[82] Liming Zhu, Muhammad Ali Babar, and Ross Jeffery. Mining patterns to support software
architecture evaluation. In Software Architecture, 2004. WICSA 2004. Proceedings. Fourth
Working IEEE/IFIP Conference on, pages 25–34. IEEE, 2004.

