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Abstract—Understanding software is an inherent requirement for many maintenance and evolution tasks. Without a thorough
understanding of the code, developers would not be able to fix bugs or add new features timely. Measuring code understandability
might be useful to guide developers in writing better code, and could also help in estimating the effort required to modify code
components. Unfortunately, there are no metrics designed to assess the understandability of code snippets.
In this work, we perform an extensive evaluation of 121 existing and new code-related, documentation-related, and developer-related
metrics. We try to (i) correlate each metric with understandability and (ii) build models combining metrics to assess understandability.
To do this, we use 444 human evaluations from 63 developers and we got a bold negative result : none of the 121 experimented metrics
is able to capture code understandability, not even the ones assumed to assess quality attributes apparently related, such as code
readability and complexity. While we observed some improvements combining metrics in models, their effectiveness is still far from
making them suitable in practice. Finally, we conducted interviews with five professional developers to understand the factors that
influence their ability to understand code snippets, aiming at identifying possible new metrics.
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1 INTRODUCTION

Developers spend most of their time (∼70%) under-
standing code [1]. While such a finding might look sur-
prising, it only highlights the pivotal role that code un-
derstanding plays in any code-related activity, such as fea-
ture implementation or bug fixing. While the importance
of code understandability is undisputed for maintenance-
related activities [2], [3], [4], [5], [6], [7], there is no empirical
foundation suggesting how to objectively assess the under-
standability of a given piece of code. Indeed, our knowl-
edge of factors affecting (positively or negatively) code
understandability is basically tied to common beliefs or is
focused on the cognitive process adopted when understand-
ing code [8], [9]. For example, we commonly assume that
code complexity can be used to assess the effort required
to understand a given piece of code. However, there is no
empirical evidence that this is actually the case. Similarly,
researchers have designed models and proposed metrics to
evaluate the readability of code by correlating them with the
readability perceived by developers [10], [11], [12], [13], [14],
[15]. This typically means that the developers participating
in the evaluation are required to read a fragment of code
and rate its readability on a given scale (e.g., from 1: low
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to 5: high readability). However, the perceived readability
is something different from the actual understandability of
the code; a developer could find a piece of code readable
while still experiencing difficulties in understanding it, for
example due to unknown APIs used. Let us consider the
code fragment listed below:

AsyncHttpClient client=new AsyncHttpClient ();
String cookies=CookieManager.getInstance ().getCookie(url);
Log.e(TAG , cookies);
client.addHeader(SM.COOKIE , cookies);

A developer, as well as all readability metrics proposed
in the literature [10], [11], [12], [13], [14], [15], would con-
sider this snippet of code as readable, since it is concise
and utilizes meaningful identifier names. Nevertheless, this
snippet of code is not necessarily easy to understand for
any given developer, because the used APIs could be un-
known to her and even poorly documented. For example,
the developer may not understand the implications of the
getCookie(url) method call without prior experience using
the API or without reading the documentation, e.g., she
might not know whether getCookie(url) could throw an
exception, return a null value, or produce some other side
effects.

Having a metric to estimate the effort required to under-
stand a given piece of code would have a strong impact on
several software engineering tasks. For example, it would be
possible to use such a metric to (i) improve the estimation
of the time needed to fix a bug (the lower the under-
standability, the higher the time to comprehend the code
and thus to fix the bug); (ii) create search-based refactoring
recommender systems using code understandability as a
fitness function; or (iii) assess the quality of code changes
during code reviews.
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While we have possible proxies for code understand-
ability, such as code complexity and readability, we do not
(i) know whether these proxies actually correlate with the
effort required to understand a piece of code, and (ii) have
a metric able to provide an estimation for code understand-
ability. Previous attempts to define a code understandability
model [4], [16], [6] have not been empirically evaluated,
consider understandability as a factor in a quality model [2],
[17], or measure understandability at the level of a whole
software system [18].

In this work, we investigate 121 metrics to determine
the extent to which they correlate with code understand-
ability. These metrics can be categorized into three types:
(i) code-related metrics (105 metrics), (ii) documentation-
related metrics (11), and (iii) developer-related metrics (5).
The code-related metrics are comprised of classic code met-
rics, like LOC and cyclomatic complexity, and readability
metrics, like text coherence [14], [15] and code indentation
[10]. As the aforementioned example illustrates, a developer
may be able to read some code snippet, but it may use
unknown code. Thus, we included existing documentation-
related metrics, like the availability of external documen-
tation, and introduced nine new documentation-related
metrics. Finally, we included developer-related metrics to
understand the extent to which the developer’s experience
and background might influence code comprehension.

To run our investigation, we performed a study with 63
participants using the 121 metrics to determine their cor-
relation with the understandability of code snippets. Each
participant was required to understand up to eight code
snippets, leading to a total of 444 evaluations. We consider
understandability from two perspectives: perceived and ac-
tual understandability of the code snippets. The participants
were presented a code snippet to understand and they were
asked whether they could understand it (perceived under-
standability). If their answer was positive, they were asked
to answer three verification questions (actual understandabil-
ity). We also monitored the time spent understanding each
snippet to estimate the effort.

By performing an extensive statistical analysis, we ob-
tained a negative empirical result: none of the considered
metrics exhibit a significant correlation with either the per-
ceived or the actual understandability. This result was quite
surprising to us, especially considering the involvement in
our study of complexity and readability metrics generally
thought to influence code understandability. Then, we ex-
ploited classification and regression models utilizing combina-
tions of metrics to predict proxies of code understandability.
While these models represent a step ahead as compared
to the single metrics taken in isolation, their prediction
accuracy is still too low to make them useful in practice.
Finally, we interviewed five developers to better understand
their perspective when it comes to understanding a code
snippet and to infer factors that could be exploited in future
metrics to automatically assess code understandability.

The main contributions of this work as compared to our
ASE’17 paper [19] it extends, are the following:

• We increased the size of our dataset from 324 eval-
uations by 46 developers to 444 evaluations by 63
developers to increase the confidence in our findings;

• We used combinations of feature models to predict
the independent variables that we define as proxies of
understandability;

• We conducted structured interviews with five expe-
rienced developers to understand what makes code
understandable/not understandable to them; we used
such information to propose possible future directions
for code understandability assessment.

Paper structure. Section 2 provides background infor-
mation about code characteristics possibly related to its
understandability. Section 3 describes the 121 metrics used
in our empirical study, while Section 4 presents the proxies
we used to assess the developers’ understandability of a
given code snippet. The design and results of the study
are presented in Sections 5 and 6, respectively. Section 7
discusses the threats that could affect our findings, while
Section 8 concludes the paper and highlights future research
directions.

2 BACKGROUND & RELATED WORK

In this section, we describe metrics and models that have
been proposed to measure code readability. All these metrics
have been included in our study. Afterwards, we briefly
describe related work presenting metrics for measuring un-
derstandability (at system level) as a single quality attribute
and as part of a quality model.

2.1 Code Readability

Identifiers and comments play a crucial role in program
comprehension, since developers express domain knowl-
edge through the names that they assign to the code entities
at different levels (i.e., packages, classes, methods, variables)
[20], [21], [22], [23], [24]. Thus, source code lexicon impacts
the psychological complexity of a program [14], [25]. An-
other aspect that also contributes to the readability (and
potentially understandability) of source code are structural
aspects such as indentation, code entity length [10], [11],
and visual/spatial aspects such as syntax highlighting, code
formatting, and visual areas covered by code entities [12].

All the aforementioned aspects have been used as fea-
tures in binary classifiers able to predict the readability of
code snippets [10], [11], [12], [14], [15]. In the model by Buse
and Weimer [10], source code structural aspects (e.g., num-
ber of branches, loops, operators, blank lines, comments)
represent the underlying features in the classifier. The model
was trained a-priori on 100 small snippets; the snippets
were tagged manually as readable or non-readable by 120
human annotators. The reported results provide evidence
that readability can be estimated automatically.

Posnett et al. [11] proposed a model based on a reduced
set of the features introduced by Buse and Weimer. An
empirical evaluation conducted on the same dataset used by
Buse and Weimer [10] indicated that the model by Posnett
et al. is more accurate than the one by Buse and Weimer.

Dorn introduced a readability model, which relies on a
larger set of features grouped in four categories: visual, spa-
tial, alignment, and linguistic [12]. This larger set of features
highlights the fact that structural aspects are not the only
ones that should be considered for code readability; aspects
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representing and modeling how the code is read on the
screen, such as syntax highlighting, variable naming stan-
dards, and operators alignment, should be also considered.
Dorn trained and validated the model on a new dataset,
including programs in Java, Python, and CUDA, for a total
of 360 snippets. Such a model achieved a higher accuracy as
compared to the one by Buse and Weimer.

Scalabrino et al. [14], [15] proposed and evaluated a set of
features based entirely on source code lexicon analysis (e.g.,
consistency between source code and comments, specificity
of the identifiers, textual coherence, comments readability).
The model was evaluated on the two datasets previously
introduced by Buse and Weimer [10] and Dorn [12] and on
a new dataset, composed of 200 Java snippets, manually
evaluated by nine developers. The results indicated that
combining the features (i.e., structural+textual) improves the
accuracy of code readability models.

2.2 Software/Code Understandability

While readable code might directly impact program com-
prehension, code readability metrics are not sufficient to
measure to what extent the code allows developers to un-
derstand its purpose, relationships between code entities,
and the latent semantics at the low-level (e.g., statements,
beacons, motifs) and high-level structures (e.g., packages,
classes). Program understanding is a non-trivial mental
process that requires building high-level abstractions from
code statements or visualizations/models [9], [4]. There
have been several metrics designed to evaluate software
understandability by focusing on complexity as well as
source-level metrics.

Lin et al. [4] proposed a model for assessing understand-
ability by building an understandability matrix from fuzzy
maximum membership estimation for population of fog
index, comment ratio, the number of components, CFS, Hal-
stead Complexity, and DMSP. The authors then used PCA
and factor analysis to get the weights for the column vectors,
which can be multiplied by the matrix to get the Synthesis
Vector of Understandability. Finally, the understandability is
calculated by using the fuzzy integral. The authors did not
empirically evaluate the proposed metric.

Misra and Akman [26] performed a comparative study
between existing cognitive complexity measures and their
proposed measure: cognitive weight complexity measure
(CWCM), which assigns weights to software components by
analyzing their control structures. The authors performed a
theoretical validation of these metrics based on the prop-
erties proposed by Weyuker [27]. They found that only one
metric, Cognitive Information Complexity Measure (CICM),
satisfied all nine properties, while the others satisfied seven
of the nine.

Thongmak et al. [3] considered aspect-oriented software
dependence graphs to assess understandability of aspect-
oriented software, while Srinivasulu et al. [6] used rough
sets and rough entropy (to filter outliers) when consider-
ing the following metrics: fog index, comment ration, the
number of components, CFS, Halstead Complexity, and
DMSC. These metrics are computed at system level for
nine projects, and subsequently the rough entropy outlier
factor was calculated for the metrics to identify the outliers,

which correspond to either highly understandable or not
understandable software based on the metric values.

Capiluppi et al. [18] proposed a measure of understand-
ability that can be evaluated in an automated manner. The
proposed measure considers: (i) the percentage of micro-
modules (i.e., the numbers of files) that are within the macro-
modules (i.e., the directories), and (ii) the relative size of
the micro-modules. The authors calculated the proposed
measure on the history of 19 open source projects, finding
that understandability typically increased during the life-
cycle of the systems. Yet, no evaluation is provided for such
a measure.

Understandability has also been a factor in quality mod-
els to assess software maintainability. Aggarwal et al. [2]
investigated the maintainability of software and proposed
a fuzzy model, which is composed of three parts: (i) read-
ability of code, (ii) documentation quality, and (iii) under-
standability of the software. To quantify understandability,
the authors utilize a prior work that defines language of
software as the symbols used, excluding reserved words.
The authors constructed rules based on the ranges of the
three factors to determine maintainability.

Similarly, Chen et al. [7] investigated the COCOMO II
Software Understandability factors by conducting a study
with six graduate students asked to accomplish 44 mainte-
nance tasks, and found that higher quality structure, higher
quality organization, and more self-descriptive code were
all correlated with less effort spent on the tasks, which leads
to high maintainability.

Bansiya and Davis [28] proposed a model where metrics
are related to several quality attributes, including under-
standability. In terms of understandability, the model con-
siders encapsulation and cohesion to have positive influ-
ences, while abstraction, coupling, polymorphism, complex-
ity, and design size have a negative influence. The authors
validated the model by analyzing several versions of two
applications and found that understandability decreases as
a system evolves with many new features. Additionally,
13 evaluators analyzed 14 versions of a project and the
authors found a correlation between the evaluators’ overall
assessment of quality and the models assessment for 11 out
of 13 evaluators.

It is worth noting that we do not consider the above
discussed understandability metrics [4], [26], [3], [6], [18],
[17], [28] in our study since they are defined at system-level
(i.e., they provide an overall indication of the system under-
standability), while we are interested in studying whether it
is possible to measure the understandability of a given code
snippet, as already done in the literature for code readability.
Instead, we included in our study the metrics used by Kasto
and Whalley [29] to study the understandability of code
snippets in an educational context. Specifically, Kasto and
Whalley analyzed the performance of 93 students in their
final examination for the Java programming course and they
correlated their results with five metrics.

Several studies have explored software understandabil-
ity and program comprehension with either students or
practitioners. Shima et al. considered the understandability
of a software system by assessing the probability that a sys-
tem can be correctly reconstructed from its components [30].
The authors asked eight students to reconstruct a system



4

and the results suggest that faults tend to occur in hard to
understand files or very simple files. Roehm et al. performed
an observational study with 28 developers to identify the
steps developers perform when understanding software
and the artifacts they investigate [5]. The authors found that
developers are more inclined towards relying upon source
code as well as discussing with colleagues over utilizing the
documentation. The authors also identified some behaviors
that improve comprehension, such as consistent naming
conventions or meaningful names.

Understandability has been mostly analyzed from the
perspective of (i) the quality attribute at the software level,
i.e., understandability as the “The capability of the software
product to enable the user to understand whether the software
is suitable, and how it can be used for particular tasks and
conditions of use" [31]; and (ii) the theories, challenges, and
models for program understanding at cognitive levels [9],
[8]. However, as of today, we still lack models for assessing
code understandability at snippet-level, similarly to code
readability. The only work we found that relates to a code
understandability model is based on complexity and size
source code level metrics [4], [16].

More recently, Trockman et al. [32] analyzed the dataset
we that released as part of our ASE’17 work [19] that this
paper extends. They showed that it is possible to define
classification models with some discriminatory power by
combining the 121 metrics considered in our study. Specifi-
cally, they use LASSO regression [32] to classify evaluations
as understandable or not understandable. In this paper, we
also experiment with combinations of metrics to predict
the understandability of a given code snippet. However,
we (i) rely on our new and larger dataset featuring 22%
more data points as compared to the one we previously
released; and (ii) we experiment with both classification
and regression techniques, and use several different proxies
for the dependent variable (i.e., code understandability), as
compared to the single one used by Trockman et al. [32].

3 CANDIDATE PREDICTORS FOR CODE UNDER-
STANDABILITY

Understandability is a multifaceted property of source code
and, as well as readability, is subjective in nature. In read-
ability, the subjectivity is represented by personal taste and
habits, while in understandability it lies in the previous
knowledge of a developer and in her mental models [8].
Consider a method of an Android activity in a mobile
app; its understandability might be high for an Android
developer, while it could be low for a Java developer with
no experience in Android. In this section, we briefly discuss
the 121 metrics considered in our study aimed at assessing
their ability to capture the understandability of a given
piece of code. Table 1 shows the complete list of metrics:
rows contain the basic metrics and columns indicate how
the metrics are aggregated (e.g., the Identifiers length for a
given code snippet is computed, as suggested by previous
work [10], as the average and as the maximum length of the
identifiers used in the snippet). We report in boldface the
new metrics introduced in the our previous work [19]. It is
worth noting that the number of metrics shown in Table 1
does not sum up to the 121 metrics considered in our study.

TABLE 1: Candidate predictors for code understandability.

Metric Non-aggregated Min Avg Max DFT Visual Area

C
od

e

Cyclomatic comp. [29]
#nested blocks [29]
#parameters [29]
#statements [29]
#assignments [10] [12]
#blank lines [10]
#characters [10]
#commas [10] [12]
#comments [10] [12] [12] [12]
#comparisons [10] [12]
#conditionals [10] [12]
#identifiers [29] [10] [10] [12] [12] [12]
#keywords [10] [10] [12] [12] [12]
#literals [12] [12]
#loops [10] [12]
#numbers [10] [10] [12] [12] [12]
#operators [10] [12] [12] [12]
#parenthesis [10] [12]
#periods [10] [12]
#spaces [10] [12]
#strings [12] [12]
#words [10]
Indentation length [10] [10] [12]
Identifiers length [10] [10]
Line length [10] [10] [12]
#aligned blocks [12]
Ext. of alig. blocks [12]
Entropy [11]
LOC [11]
Volume [11]
NMI [14] [14] [14]
NM [14] [14]
ITID [14] [14][12]
TC [14] [14] [14]
Readability [14]
IMSQ [19] [19] [19]

D
oc

s
CR [14]
CIC [14] [14]
CICsyn [14] [14]
MIDQ [19] [19] [19]
AEDQ [19] [19] [19]

D
ev

s EAP [19] [19] [19]
PEgen [19]
PEspec [19]

This is due to the fact that some forms of aggregation, e.g.,
“Visual” and “Area”, include multiple ways of aggregating
the same measure. For example, each metric aggregated as
“Visual” should be counted twice. Indeed, for these metrics,
a “virtual” color to each character in the code is assigned,
based on the type of the token it belongs to (e.g., characters
of identifiers have color 1, while characters of keywords
have color 2), thus creating a matrix of colors for the snippet.
Then, the variation of colors is computed both on the X and
on the Y axis of such a matrix [12], thus resulting in two
different forms of aggregation. The complete list of metrics
is available in our replication package [33]. In the following
subsections, we discuss the considered metrics grouped by
their type.

3.1 Code-Related Metrics

Most of the metrics considered in our study assess source
code properties. We include the five metrics used by Kasto
and Whalley [29]: cyclomatic complexity [34], which estimates
the number of linear independent paths of the snippet aver-
age number of nested blocks, which measures the average code-
block nesting in the snippet, number of parameters, number of
statements and number of operands, i.e., number of identifiers.

We also include in this category all the code-related
readability metrics defined in the literature [10], [11], [12],
[14]. These include the ones by Buse and Weimer [10],
assessing properties for a single line of code (e.g., number
of identifiers or line length) and then aggregated (with the
maximum and/or the average) to work at the level of “code
snippet”.
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Lines of code (LOC), token entropy and Halstead’s volume
are used by Posnett et al. [11] in the context of readabil-
ity prediction. Dorn [12] presents a variation to the basic
metrics introduced by Buse and Weimer [10], measuring
the bandwidth of the Discrete Fourier Transform (DFT) of
the metrics, the absolute and the relative area of characters
belonging to different token categories (e.g., identifiers, key-
words or comments), the alignment of characters through
different lines, and the number of identifiers containing
words belonging to an English dictionary. Note that the
area-related metrics defined by Dorn are computed both
in an absolute way (e.g., total area of comments) and in
a relative way (e.g., area of comments divided by area of
strings). These variants are not reported in Table 1 due to
space constraints, but are considered in our study and listed
in our replication package [33].

Scalabrino et al. [14] define Narrow Meaning Identifiers
(NMI), Number of Meanings (NM), Identifiers Terms In Dic-
tionary (ITID) and Textual Coherence (TC) to capture the
readability of a code snippet. Such metrics are computed
line-by-line (ITID), identifier-by-identifier (NMI and NM)
or block-by-block (TC); the authors aggregate the measures
using minimum, average and maximum, in order to have a
single measure for the snippet. We also use code readability,
as defined by Scalabrino et al. [14], as a separate metric,
combining together the previously listed metrics. We fol-
lowed the steps described by Scalabrino et al. to define the
readability model by using a logistic classifier that we train
on the 420 Java snippets available in the literature [10], [12],
[14].

We also introduce a new code-related metric, the Invoked
Methods Signature Quality (IMSQ), which measures the qual-
ity of the signature of the internal methods invoked by a
given code snippet s (i.e., methods belonging to the same
system of s) in terms of readability and representativeness.
We define the Method Signature Quality (MSQ) of an in-
voked method m as:

MSQ(m) =
1

|IS (m)|
∑

id∈IS(m)

IQ(id)

where IS(m) is the set of identifiers used in the m’s signature
(i.e., method name and parameters) and IQ(id) is defined as:

IQ(id) =

{
1
2 (Rd(id) + Rp(id)), id is a method name
Rd(id), id is a parameter name

IQ(id) captures the quality of an identifier in terms of
its readability (Rd) and its representativeness (Rp). The
idea behind the readability is that an identifier should be
composed of a (possibly small) set of meaningful words. To
measure Rd for an identifier (id), we (i) split id into the words
composing it, (ii) expand each word to bring it in its original
form (e.g., ptr → pointer), (iii) create a new identifier
idexp composed by the expanded words separated by a “_”,
and (iv) measure the Levenshtein distance between id and
idexp. The Levenshtein distance between two strings a and b
measures the minimum number of single-character changes
needed to transform a into b. The conjecture behind IQ(id)
is that the higher the Levenshtein distance between id and
idexp, the higher the mental effort required for the developer
to understand the meaning of the identifier by mentally

splitting and expanding it during program comprehension.
Note also that we separate the expanded terms in idexp by
using “_” in order to penalize, by increasing the Levenshtein
distance, identifiers composed by several words. For exam-
ple, the identifier printOnStdOut is first split into print, on,
std, out; then, each word is expanded, which has no effect
on the first two words, but expands std into standard and
out into output. Therefore, printOnStdOut is transformed
in print_on_standard_output.

To have Rd(id) defined in [0, 1], we normalize the Leven-
shtein distance (L) between id and idexp as follows:

Rd(id) = 1− L(id , idexp)

max(|id |, |idexp|)

where max(|id |, |idexp|) represents the longest identifier
among the two. When the distance equals zero, the read-
ability of the identifier equals one, indicating no need for ex-
pansion/splitting (i.e., id is composed by a single expanded
word).

Note that in the implementation of Rd(id), we used a
semi-automatic approach to split/expand identifiers. We
first used a naive automatic splitting technique, based on
camel case and underscores; then, we automatically checked
the presence of each resulting word in an English dictionary.
If the word was not found, we manually expanded/further
split the specific word. For example, for the word “cmd-
line” there would not be automatic split. Since the word
“cmdline” does not exist in the dictionary, we manually
convert it to “command” and “line”. We save all the manual
substitutions in order to minimize the human effort. In the
literature, there are many automatic approaches for identi-
fier splitting/expansion, but we preferred to implement a
simpler and more effective strategy at this stage, since the
number of identifiers to split/expand was limited and our
goal was to assess the correlation of the defined metrics with
the understandability effort. Thus, we wanted to be sure to
avoid introducing imprecision while computing the metrics.

When dealing with the identifier used to name a method,
we also verify whether it is representative of what the
method does (Rp). We compute the textual overlap between
the terms used in the identifier and in the method body. We
tokenize the method body to define its dictionary. Then, we
count the number of times each word from the identifier
(expanded or not) is contained in the dictionary extracted
from the method body. We consider only names and verbs
from the identifiers, ignoring other parts of speech such as
conjunctions, since they do not carry semantic information.
Following the printOnStdOut example, we check whether
the method body contains the words print, standard, std,
output, and out. We measure the representativeness as the
ratio between the number of words from the identifier (i.e.,
method name) contained in the method body, and the total
number of words in the identifier. If all the words from
the identifier are used in m’s body, we assume that the
method name is representative of m and thus, should ease
the understanding of methods invoking m. If, instead, words
are not found in the method body, this could hinder the
understandability of the methods invoking m.

In our study, we consider the minimum, the average,
and the maximum values of the MSQ metric for a given
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code snippet (e.g., the average MSQ of all methods invoked
in the code snippet).

3.2 Documentation-Related Metrics

Scalabrino et al. [14] introduced three metrics to capture the
quality of the internal documentation of a snippet: Comments
Readability (CR) measures the readability of the comments in
a snippet using the Flesch reading-ease test [35]; Comments
and Identifiers Consistency (CIC) measures the consistency
between comments and code; and CICsyn, a variant of CIC,
which takes synonyms into account.

We also introduce two new metrics aimed at capturing
the quality of both the internal (MIDQ) and external (AEDQ)
documentation available for code components used in a
given snippet. The Methods Internal Documentation Qual-
ity (MIDQ) for a snippet s acts as a proxy for the internal
documentation (i.e., Javadoc) available for the internal meth-
ods (the ones belonging to the same project as s) invoked
in s. Given m an internal invoked method, we compute
MIDQ(m) using a variation of the approach proposed by
Schreck et al. [36]:

MIDQ(m) =
1

2
(DIR(m) + readabilityD(m))

where DIR(m) is the Documented Items Ratio computed
as the number of documented items in m divided by the
number of documentable items in m. We consider as docu-
mentable items for m (i) its parameters, (ii) the exceptions it
throws, and (iii) its return value. Such items are considered
as documented if there is an explicit reference to them in the
Javadoc through the tags @param, @throws and @returns.
readabilityD(m) represents, instead, the readability of the
Javadoc comments assessed using the Flesch reading-ease
test [35]. The higher MIDQ the higher the internal documen-
tation quality for m. We consider the minimum, the average,
and the maximum values of the MSQ metric for a given code
snippet.

Concerning the API External Documentation Quality
(AEDQ), it tries to capture the amount of information about
APIs used in the given snippet s that can be acquired from
external sources of documentation, such as Q&A websites.
The conjecture is that if external documentation is available,
it is more likely that developers are able to understand
the usage of an API in a code snippet s. We compute
the availability of external documentation for each external
class c used in s via the AEDQ(c) metric. First, we identify
all Stack Overflow discussions related to c by running the
following query:

title:"how to" <c> hasaccepted:yes [java]

In other words, we select all Stack Overflow discussions that
(i) contain “how to” and the class name in the title, (ii) have
an accepted answer, and (iii) concern Java (since our study
has been performed on Java snippets). Then, we sum the
votes assigned by the Stack Overflow users to the question
in each retrieved discussion, in order to have a quantitative
information about the interest of the developers’ community
in such a class. We assume that higher interest in a given
API class implies a higher availability of external sources
of information (e.g., discussions, code examples, etc.). We
consider in our study the minimum, the average, and the

maximum values of the AEDQ metric for the external classes
used in s.

3.3 Developer-Related Metrics

Since understandability is a very subjective feature of code,
we introduced three developer-related metrics. We measure
the programming experience of the developer who is re-
quired to understand a snippet (PEgen and PEspec) and the
popularity of the API used in the snippet (EAP).

The common wisdom is that the higher the program-
ming experience of developers, the higher their capability
of understanding code. PEgen measures the programming
experience (in years) of a developer in general (i.e., in
any programming language). PEspec assesses instead the
programming experience (in years) of a developer in the
programming language in which a given snippet s is im-
plemented. The higher PEspec, the higher the developer’s
knowledge about the libraries available for such a program-
ming language.

With External API Popularity (EAP), we aim at capturing
the popularity of the external APIs used in a given snippet.
The assumption is that the lower the popularity, the lower
the probability that a typical developer knows the API. If
the developer is not aware of the APIs used in a snippet,
it is likely that she has to look for its documentation or to
inspect its source code, thus spending more effort in code
understanding.

We rely on an external base of Java classes E to esti-
mate the popularity of an external class. We chose as E a
10% random sample of classes from Java/Android projects
hosted on GitHub in 2016, totaling ∼2M classes from ∼57K
Java projects. We used Google BigQuery to extract all the
imports of all the classes belonging to such projects using a
regular expression. Then, we counted the number of times
each class imported in E occurred in the import statements.
Note that in Java it is possible to import entire packages (e.g.,
import java.util.∗). In this case, it is difficult to identify the
actual classes imported from the package. For this reason,
we applied the following strategy. Let us assume that a
class, Foo, is imported only once with the statement import
bar.Foo, but it is part of a quite popular package, bar, that is
imported 100 times in E through the statement import bar.∗.
The class Foo2, belonging to the same package, is imported
99 times with the statement import bar.Foo2. In this case,
we increase the number of occurrences of classes belonging
to imported package in a proportional way. In the presented
example, we add 1 to the number of Foo’s imports, and 99
to the number of Foo2 imports. We found that imports of
entire packages represent only 2.6% of all the imports and,
therefore, their impact is very low. EAP(c) is defined as the
number of c imports normalized over the number of imports
of cmax, where cmax is the most imported class we found in
E (i.e., java.util.List).

4 PROXIES FOR CODE UNDERSTANDABILITY

Code understandability can affect two aspects of code un-
derstanding: the correctness (i.e., how well the developer is
able to understand a snippet), and the time needed to un-
derstand the snippet. Moreover, as previously shown [19],
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developers might perceive that they understand a given code
without actually understanding it. Since understandability is
composed by several facets, we introduce six proxies of code
understandability. These proxies can be used to (i) study
the correlation between the candidate predictor variables
introduced in Section 3, and (ii) as dependent variables in
techniques aimed at predicting code understandability:

1) Perceived Binary Understandability (PBU). This is a
binary categorical variable that is true if a developer
perceives that she understood a given code, and false
otherwise.

2) Time Needed for Perceived Understandability
(TNPU). This is a continuous variable in <+, measur-
ing the time spent by the developer to comprehend a
given code before having a clear idea on whether she
understood it or not.

3) Actual Understandability (AU). This is a continuous
variable in [0, 1], measuring the actual understanding of
the inspected code. A possible way of measuring actual
understandability is through verification questions. For
example, the developer understanding the code could
be required to answer three questions, and the percent-
age of correct answers is used to assess AU.

4) Actual Binary Understandability (ABUk%). This is a
binary categorical variable derived from AU. It is true if
AU is greater than k, false otherwise. ABUk% is basically
a proxy to classify snippets of code as understandable
or not based on the level of actual understanding de-
velopers are able to achieve while inspecting it.

5) Timed Actual Understandability (TAU). This is a con-
tinuous variable in [0, 1], derived from AU and TNPU. It
gets a value of 0 if the developer perceives that she did
not understand the snippet. Otherwise, it is computed
as:

TAU = AU

(
1− TNPU

maxTNPU

)
where AU and TNPU are the variables previously
defined. The higher AU, the higher TAU, while the
higher TNPU, the lower TAU. We take into account
the relative time ( TNPU

maxTNPU ) instead of the absolute
time, so that TAU gives the same importance to both
the correctness achieved (AU) and the time needed
(TNPU). maxTNPU is, indeed, the maximum TNPU
measured on the snippet.

6) Binary Deceptiveness (BDk%). This is a binary cate-
gorical variable derived from PBU and ABUk%, which
is true if PBU is true and ABUk% is false, and false
otherwise. BDk% indicates whether a developer can be
deceived by a method in terms of its understandability
(i.e., she incorrectly thinks she understood the method).

5 EMPIRICAL STUDY DESIGN

The goal of our study is to assess the extent to which the
considered 121 metrics are related to code understandabil-
ity and what developers consider as understandable/not
understandable. The perspective is of researchers interested
in (i) analyzing whether code-related, documentation-related,
and developer-related metrics can be used to assess the un-
derstandability level of a given piece of code, and (ii)

TABLE 2: Systems used in our study

System Java KLOC Category Description

ANTLR 178 Desktop Lexer-parser
Car-report 45 Mobile Car costs monitoring
Hibernate 948 Framework ORM framework
Jenkins 231 Web Continuous integration
K9 mail 121 Mobile Mail client
MyExpenses 101 Mobile Budget monitoring
OpenCMS 1059 Web Content Management System
Phoenix 352 Framework Relational database engine
Spring 197 Framework Generic application framework
Weka 657 Desktop Machine-learning toolkit

investigating characteristics of code considered as important
for developers during program comprehension. This study
aims at answering the following research questions:
RQ1 What is the correlation between the 121 considered metrics

and the understandability level of a given developer for
a specific code snippet? Given the wide and heteroge-
neous set of considered metrics, answering this research
question would allow us and, in general, the research
community to understand how far we are from defining
a set of metrics capable of automatically and objectively
assessing code understandability;

RQ2 Is it possible to define understandability models able to
predict code understandability? Given a snippet of code,
we want to determine whether combining metrics in a
model can effectively capture the level of understand-
ability of that code;

RQ3 How do developers determine the understandability of
code? While the first two questions relate to metrics to
assess understandability, it is also important to consider
the perspective of developers when trying to under-
stand code. To this end, we aim to deepen our analysis
by asking experienced developers what makes a certain
code snippet understandable or not understandable.

5.1 Data Collection
The context of the study consists of 50 Java/Android meth-
ods extracted from ten popular systems listed in Table 2
(five methods from each system). We first extracted all the
methods having 50±20 ELOCs (i.e., Effective Lines Of Code,
excluding blank and comment lines) from the systems. The
choice of the methods’ size (i.e., 50± 20 ELOCs) was driven
by the decision of excluding methods that are too trivial or
too complex to understand.

Afterwards, we computed all the metrics described in
Section 3 for the selected methods1. Then, we used a greedy
algorithm for center selection [37] to select the 50 most
representative methods based on the defined metrics. Given
a set of candidate methods M and a set of already se-
lected centers C, the algorithm chooses, in each iteration,
argmaxm∈M dist(C,m), i.e., the candidate method which is
the farthest possible (in terms of considered metrics) from
the already selected centers of which the first center is
randomly selected. In order to select exactly five snippets
from each system, we used the set of candidate methods
from a specific system as M until the five methods for such
a system were selected; then, we changed M with the set of

1. Excluding the “Developer programming experience” and the “De-
veloper Java experience”
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candidate methods from another system, and so on, until |C|
= 50. Note that (i) we did not empty the C set when changing
the candidate methods (i.e., when moving from one system
to another) to always keep track of the methods selected
up to that moment, thus avoiding the risk of adding to C
methods similar to the ones already in C; (ii) we did not
run the algorithm on the union of all candidate methods
to ensure the selection of five methods per system (thus
increasing the heterogeneity of the final sample).

After selecting the 50 methods and computing the values
of the metrics for each of these 50 methods, we needed to
define a ground-truth, which reports the understandability
of each method. To this aim, we invited 63 Java developers
and CS students to participate in a survey, where they were
required to understand the selected methods. The survey
was implemented in a Web application and featured the
following steps. First, we collected demographic data about
participants: (i) years of experience in programming and
more specifically in Java, and (ii) current position (e.g., CS
student, developer etc.). This information was used in part to
compute the developer-related metrics. We asked participants
for consent to anonymously use the gathered data. We
do not report developers’ names and e-mail addresses for
privacy reasons. After this preliminary step, each participant
was required to understand a subset of eight methods
randomly selected from the 50 methods. The Web appli-
cation was designed to automatically balance the number
of evaluations for each of the 50 methods (i.e., the number
of participants understanding each method was roughly the
same). In total, we collected 444 evaluations across the 50
methods (∼8.9 evaluations per method on average), since
not all participants completed the survey.

The eight methods were presented individually (i.e., each
method on a different page) to participants, and the Web
application allowed navigation of the method and access to
the methods/classes invoked/used by it. Also, participants
were allowed to browse the Web to collect information about
types, APIs, data structures, etc. used in the method. This
was done to simulate the typical understanding process
performed by developers. We asked participants to carefully
read and fully understand each method. Participants could,
at any moment, click on the button “I understood the
method” or the button “I cannot understand the method”.
In both cases, the Web application stored the time spent, in
seconds, by the developer for the method’s understanding
before clicking on one of the two buttons. If the participant
clicked on ”I understood the method”, the method was
hidden and she was required to answer three verification
questions about the method she just inspected. Specifically,
one of the questions was about the identifiers used in the
method (e.g., what does “CMS” mean?), one was about the
purpose of a call to an internal method and another one
about the purpose of the use of an external component (e.g.,
JDBC APIs). The provided answers were stored for future
analysis. An example of verification question is: “What does
the invoked method X do?”. To answer such a question,
the participant must understand all of the consequences of
invoking a specific external method.

5.2 Analysis Method

In the context of our study, we measure the understand-
ability level using the previously defined proxies of code
understandability.

We measure Perceived Binary Understandability (PBU)
using the initial declaration of the participants: if they
clicked on “I cannot understand the method” button, PBU
is false, while it is true otherwise (i.e., the participant clicked
on “I understood the method”).

We measure Time Needed for Perceived Understand-
ability (TNPU) as time, in seconds, spent by the partic-
ipant while inspecting the method before clicking on “I
understood the method”. This metric cannot be computed
when the participant clicked on “I cannot understand the
method”.

We measure Actual Understandability (AU) as the per-
centage of correct answers given by the participants to the
three verification questions. If the participant clicked on the
“I cannot understand the method” button, AU is 0.

We measure Actual Binary Understandability (ABUk%),
with k = 50. Therefore, ABU50% is true when participants
correctly answer at least two of the three verification ques-
tions, and false otherwise.

To measure Timed Actual Understandability (TAU),
we use the previously defined formula, which combines
AU and TNPU. TAU gets value 0 if the participant clicked
on the “I cannot understand the method” button. In this
context, we used a modified version of TNPU in which
outliers (detected using the Tukey’s test [38], with k = 3)
are replaced with the maximum value of TNPU which is
not an outlier. We did this because the maximum value of
TNPU in our dataset is 1,649 seconds, much greater than the
third quartile (164 seconds). Using the real maximum value
would have flattened down all the relative times.

Finally, we measure Binary Deceptiveness (BDk%), with
k = 50, using the previously defined formula which com-
bines PBU and ABU50%.

We computed these six variables for each of the 444
evaluations performed by participants (i.e., for each method
that each participant tried to understand). We excluded 2
of the 121 considered metrics (i.e., NMImin and ITIDmin),
because the value of such metrics was 0 for all the snippets.

To answer RQ1, we first verified which metrics strongly
correlate among the 121. This was done to exclude redun-
dant metrics, which capture the same information in differ-
ent ways, from our analysis. We compute the Kendall rank
correlation coefficient (i.e., Kendall’s τ ) [39] to determine
whether there are pairs exhibiting a strong correlation. We
adopted the Kendall’s τ , since it does not assume the data to
be normally distributed nor the existence of a straight linear
relationship between the analyzed pairs of metrics. Cohen
[40] provided a set of guidelines for the interpretation of
the correlation coefficient. It is assumed that there is no
correlation when 0 ≤ |τ | < 0.1, small correlation when
0.1 ≤ |τ | < 0.3, medium correlation when 0.3 ≤ |τ | < 0.7,
and strong correlation when 0.7 ≤ |τ | ≤ 1. For each pair of
metrics exhibiting a strong correlation (i.e., with a Kendall’s
|τ | ≥ 0.7), we excluded the ones which presented the highest
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number of missing values2 or one at random, when the
number of missing values were equal. This allowed us to
reduce the number of investigated metrics from 121 to 73.
Finally, we computed the Kendall correlation between each
of the remaining 73 metrics and PBU, TNPU, AU, BD50%,
and TAU to verify whether some of them are able to capture
the (actual and perceived) understandability of code. We did
not compute the correlation with ABU50%, since, in this case,
it would have been redundant, because we already compute
the correlation with AU.

To answer RQ2, we tried to combine the metrics defined
in Section 3 to predict the six proxies of understandability
previously defined. Since the number of metrics is high
as compared to the number of instances, we performed a
preliminary phase of feature selection. First, we removed the
features highly correlated among each others (as previously
done for RQ1); then, we removed Area Keywords/Com-
ments, because of the high number of missing values (124,
more than 30% of the instances), which could be problematic
for some of the used machine learning techniques.

To build a model for predicting PBU, ABU50%, and
BD50%, we use a broad selection of classifiers defined in the
literature, since such variables are nominal. Specifically, we
use (i) Logistic Regression [41], (ii) Bayes Networks [42],
(iii) Support Vector Machines (SMO algorithm [43]), (iv)
Neural Networks (Multilayer Perceptron), (v) k-Nearest-
Neighbors [44], and (vi) Random Forest [45]. As a first step,
we use 10% of each dataset to tune the hyperparameters for
some machine learning techniques known to be sensitive
to parameter tuning and we remove such instances from
the dataset used in the experiment. We focus on the main
parameters of each technique and, specifically, we tune:
(i) number of hidden layers, learning rate, and momentum for
Multilayer Perceptron; (ii) k, weighting method, and distance
metric for kNN; (iii) kernel, exponent, and complexity for SMO;
(iv) number of features for Random Forest. To do this, we
use an exhaustive search approach on a reduced search
space: We define discrete values for each parameters (at
most 10 values) and we try all of the possible combinations.
We search for the combination of parameters that achieves
the best AUC using leave-one-out cross-validation on the
tuning set. We do not tune hyperparameters for Logistic
Regression and Bayes Networks, since they do not rely on
any particular parameter.

Both PBU and BD50% were unbalanced: PBU presented
a high number of positive instances (∼69%), while BD50%

a high number of negative instances (∼80%). To have bal-
anced models, we use the SMOTE filter [46] on the training
sets to generate artificial instances for the minority classes.
Moreover, while Random Forest is designed to automat-
ically select the best features, for the other algorithms it
is important to have an adequate number of features in
relation to the number of instances. To achieve this goal,
for those techniques, we performed a second round of
feature selection using linear floating forward selection with
a wrapper strategy. We used Logistic Regression as the
classifier for the wrapper and AUC (Area Under the Curve)

2. Some metrics cannot be computed in some cases. For example,
“Area of comments/literals” cannot be computed if the method does
not contain literals.

as the metric for the evaluation of the effectiveness of each
subset of features, computed with a 5-fold cross validation.
We report the average F-Measure of the classes of each vari-
able and the AUC of all the classifiers for the three variables
to show the effectiveness of combinations of metrics defined
in the literature in the prediction of the nominal proxies of
understandability.

For the other proxies, i.e., TNPU, AU and TAU, we use
several regression techniques defined in the literature, since
such variables are numeric. Specifically, we use (i) Linear
Regression, (ii) Support Vector Machines (SMOreg [47]), (iii)
Neural Networks (Multilayer Perceptron), (iv) k-Nearest-
Neighbors[44] and (v) Random Forest[45]. In this case, we
report the correlation of the predicted values with the actual
values and the MAE (Mean Absolute Error) of the predic-
tion, computed as

∑n
i (|xi−x∗

i |)
n . We use the same approach

that we used for classification to tune the parameters of the
regressors and to select the best features. In this case, we
look for the parameters and the features that minimizes the
mean absolute error. We use linear regression as regressor
in the wrapper strategy.

Both classifiers and regression models need to be trained
and tested on different datasets to avoid overfitting (i.e., the
model would fit the specific data, but not generalize). For
this reason, we performed leave-one-out cross-validation
where we divided the dataset in 444 folds, i.e., each fold
contains exactly one instance. For each iteration, one of the
folds was used as test set and the union of the other folds
as training set for our models. Therefore, for each evaluated
instance, we train our models on the whole dataset without
the test instance. This solution is ideal in this context for two
reasons: (i) since our dataset may be small for regression
techniques to be effective, we cannot afford to reduce the
number of instances for the training phase; (ii) this type
of validation allows us to use all the evaluations of the
same developer (except for the one that has to be tested)
in the training phase. This would allow machine learning
techniques to define rules specific for the developer itself.
It is worth highlighting that we do not aim at comparing
different machine learning techniques. Instead, our goal is
to understand if any technique is able to effectively combine
the considered metrics to capture code understandability.

Finally, to answer RQ3, we conducted semi-structured
interviews with five experienced developers, listed in Ta-
ble 4. The developers provided consent to include their
names in this paper. We do not directly associate the names
to the performance in the tasks. To guide the interviews, we
selected 4 methods among the 50 that we used to answer our
first two research questions. Such methods where (i) the one
with the highest mean TAU, i.e., the most understandable
one, (ii) the one with the lowest mean TAU, i.e., the least
understandable one, (iii) the one with the highest standard
deviation in TAU, i.e., the one for which the understandabil-
ity seems to be most subjective, and (iv) the one that has the
highest TNPU and a number of BD50% = true greater than
zero, i.e., the method that, despite being analyzed for the
longest time, still makes some developers incorrectly believe
that they understood it.

We use TAU as a proxy for understandability to select
the first three snippets as it takes into account both the
actual understandability and the time taken to understand
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Fig. 1: Participants to the study

the snippet. Table 3 shows the four methods we selected.
For each method, we asked the five developers to read
and understand it, thinking aloud, if they wanted. Before
the participants started to read and understand the snippet,
we asked them how familiar they were with the system to
which the snippet belongs and with the APIs used in the
snippet. For each snippet, after the participants concluded
the understanding phase, we asked precise questions: Q1:
“do you think this snippet is understandable?”; Q2: “what makes
this method understandable/not understandable to you?”; Q3: “is
it possible to modify the method to make it more understandable?
If yes, how?”. If the participants understood the snippet, we
asked the purpose of the snippet to ensure they actually
understood it, unless they explained it while they thought
aloud during the interview. Finally, we registered the time
the participants took to understand the snippets. We report
the answers of the participants to each question and, above
all, we report interesting insights that we could catch during
the interviews.

5.3 Replication Package

The data used in our study is publicly available [33]. We
provide the research community with our dataset reporting
the (perceived and actual) understandability achieved by
the 63 participants, hoping that the availability of such a
dataset will help foster research on the definition of a metric
to automatically assess code understandability.

6 EMPIRICAL STUDY RESULTS

In this section, we present the results of our empirical
study. Fig. 1 provides information about the participants
involved in RQ1 (same dataset is used for RQ2 as well).
The majority of them (∼ 60%) are CS bachelor’s students—
mixed in terms of years of programming experience. The
sample of participants also includes nine master’s students,
three Ph.D. students, and thirteen professional developers.

6.1 RQ1: Correlation With Single Metrics

When evaluating the metrics on a larger number of eval-
uations and by considering more proxies for code under-
standability, we still observe the negative results that were
shown in our previous study [19]: Very few metrics have
a correlation with understandability higher than |0.1|.
Specifically, 8 metrics have a weak correlation with PBU,
only one with TNPU, 13 with AU, 13 with TAU, and 2 with
BD50%. Note that, since we only observed weak correlations,
these metrics are very unlikely to be appropriate proxies for

code understandability. 51 out of the 73 metrics considered
showed no correlation at all with any of the proxies.

The metric which has the highest correlation with PBU
are two: (i) maximum line length (τ ≈ −0.13), which is one
of the metrics introduced by Buse and Weimer [10] for
readability prediction; (ii) PEspec (τ ≈ 0.13), which measures
the Java experience of the developer. Note that Buse and
Weimer also found that Maximum line length is the most
important one for readability prediction in their model [10].
Therefore, this reinforces the fact that, generally, developers
tend to perceive code with long lines as less pleasant.
The correlation with PEspec, instead, shows that developers
with more experience in the specific programming language
tend to have a slightly higher confidence and they tend
to perceive snippets of code as understandable more fre-
quently than developers with less experience. Finally, we
observed other low correlations with PBU: NMavg (-0.12),
i.e., when words used for identifiers have many meanings,
they make developers perceive the snippet as slightly less
understandable; MIDQmin (0.12), i.e., the higher the mini-
mum quality of the internal documentation, the higher the
perceived understandability; average identifiers’ length (-0.12),
i.e., shorter identifiers slightly help perceiving the code as
more understandable.

While in our previous study we showed that ten of the
metrics have a slight correlation with TNPU, replicating this
work on a larger number of evaluations reduced the number
to just a single metric, i.e., DFT of conditionals (0.11).

The metric that has the highest correlation with AU is
average Textual Coherence (τ ≈ −0.16). The fact that such a
correlation is negative is surprising, because we expected
a higher Textual Coherence to imply a higher understand-
ability. Also, we found that number of parameters negatively
correlates with AU (τ ≈ −0.13) (i.e., the larger the number
of parameters, the lower the actual understandability of
the method). We found a similar result also in RQ3 when
interviewing developers. Other examples of metrics corre-
lated with AU are PEspec (τ ≈ 0.13) and DFT of conditionals
(τ ≈ −0.13).

The metric with the highest correlation with TAU is
DFT of conditionals (τ ≈ −0.16). This suggests that high
complexity reduces the understandability of a snippet. It
should be noted that for TAU, which is expression of actual
understandability, we observe only a slight correlation with
the programming experience (τ ≈ 0.11 for PEspec).

Finally, only two metrics, i.e., number of literals (visual X)
and DFT of conditionals, are slightly correlated with BD50%

(τ ≈ 0.11 and 0.1, respectively). All the other metrics show
a negligible correlation.

Summary forRQ1. None of the metrics we considered
achieve a medium/strong correlation with any of the
proxies of code understandability we defined.

6.2 RQ2: Performance of Multi-Metrics Models

We report the performance of models that combine metrics
dividing them as classification, for PBU, ABU50% and BD50%,
and regression, for TNPU, AU and TAU.
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TABLE 3: Methods used during the interviews with developers

System Class Method Type URL

OpenCMS CmsHoverbarContextMenuButton createContextMenu The most understandable (TAU = 0.74) https://git.io/vpHzL
Phoenix MetaDataEndpointImpl doDropSchema The least understandable (TAU = 0.06) https://git.io/vpHzm
Hibernate TimesTenDialect TimesTenDialect The most subjective (sd(TAU) = 0.46) https://git.io/vpHzs
MyExpenses LazyFontSelector processChar The most deceptive (TNPU = 391.0, #BD50% = 2) https://git.io/vpHzZ

TABLE 4: Position and experience of the interviewed devel-
opers

Name Position Programming experience

Salvatore Geremia PhD Student @ Unimol 8 years
Giovanni Grano PhD Student @ Uzh 8 years
Stefano Dalla Palma Android developer @ Datasound 5 years
Carlo Branca Front-end developer @ Gatelab 8 years
Matteo Merola Back-end developer @ Bunq 8 years

TABLE 5: Classification results of PBU, ABU50%, and BD50%

Classifier PBU ABU50% BD50%

F-Measure AUC F-Measure AUC F-Measure AUC

Logistic 0.68 0.71 0.63 0.71 0.72 0.71

kNN 0.62 0.63 0.59 0.66 0.74 0.66
SMO 0.64 0.63 0.63 0.63 0.71 0.63
Naive Bayes 0.60 0.65 0.66 0.68 0.63 0.66
Random Forest 0.65 0.63 0.67 0.72 0.77 0.64
ML Perceptron 0.66 0.69 0.63 0.70 0.70 0.70

6.2.1 Classification
Table 5 shows the F-Measure and AUC of the classification
of PBU, ABU50%, and BD50%. Since we use Logistic Regres-
sion for feature selection, we do not include it directly in
the comparison among the techniques. It is worth noting
that the AUC achieved by Random Forest and Multilayer
Perceptron for the classification of ABU50% seems to sug-
gest that it is possible to classify with a good level of
confidence snippets as actually understandable or actually not
understandable. Looking at the F-Measure, however, it is clear
that we are quite far from having a practical classifier for
actual understandability. Also, looking at the classification
accuracy, 33% of the instances are wrongly classified by the
best model.

Such results are even more negative for PBU and, above
all, BD50%. For PBU the maximum F-Measure is ∼0.66.
On the other hand, the best F-measure for BD50% is 0.77,
achieved by Random Forest. However, this positive result
hides the fact that such a classifier has good results only
on negative instances. Both precision and recall for the pos-
itive class are, indeed, very low (mean 0.31 and 0.51 for
precision and recall, respectively). In general, looking at
the F-Measure of the minority classes, which are perceived
as not understandable and deceptive, such values are much
lower (i.e., 0.48 and 0.37, respectively), despite the fact
that we used SMOTE to balance the training sets. We can
conclude that the combination of the considered metrics
shows a slight discriminatory power for actual binary un-
derstandability (ABU50%); however, we are quite far from
a practically useful prediction model of actual/perceived
understandability and deceptiveness.

6.2.2 Regression
In Table 6, we report the performance of the regression
models for TNPU, AU and TAU. The first thing that is

TABLE 6: Regression results of TNPU, AU, and TAU

Regressor TNPU AU TAU
Correlation MAE Correlation MAE Correlation MAE

Linear Regression 0.14 132.9 0.35 0.30 0.36 0.27

kNN 0.11 137.1 0.26 0.31 0.21 0.28
SMOreg 0.17 114.4 0.36 0.29 0.29 0.27
Random Forest 0.09 147.0 0.34 0.29 0.29 0.28
ML Perceptron 0.18 124.8 0.37 0.30 0.36 0.27

very clear is that our models are not able to predict TNPU
(Time Needed for Perceived Understandability). The highest
correlation for TNPU is only 0.18, higher than the correlation
achieved by single metrics, but still very low. The Mean
Absolute Error is also very high. On average, we can expect
a prediction of TNPU to be wrong by about 2 minutes. Con-
sidering that the average TNPU is 143.4 seconds, without
excluding outliers, it is clear that any prediction of TNPU
made with the state of the art metrics is practically useless.

On the other hand, it can be seen that there is a good
improvement in the correlation for both AU and TAU, when
using combinations of metrics rather than single metrics.
The maximum correlations are 0.37 and 0.36, respectively,
leading to a medium correlation. However, it is worth notic-
ing that the Mean Absolute Error is quite high. In our
context, the MAE of 0.29 for AU means that we should
expect our model to be wrong by one answer, on average
(0.29 ≈ 0.33). If our model predicts that AU is 0.66 (the
participant gives two correct answers out of three), it may
be that she gives one or three correct answers, thus making
this prediction poorly actionable except for corner cases
(predicted AU very low or very high).

Summary for RQ2. Combining the state-of-the-art
metrics can result in models that show some discrim-
inatory power in the prediction of some proxies of
code understandability (i.e., ABU50%, AU and TAU).
However, such predictions are not sufficiently good
yet to be used in practice.

6.3 RQ3: Structured Interviews with Developers
We report the results of the interviews by presenting the
developer responses grouped by each type of code snippet.
The interviews lasted roughly between one and two hours
each. For space limitations, we report the complete code
snippets in our replication package [33].

6.3.1 The Most Understandable Method
All the developers correctly described the functionality
implemented in the method, and all of them answered
positively to Q1 (i.e., they think the method is understand-
able). The average time needed to understand the method
was about 2.5 minutes. As expected, this was the method
understood most quickly.
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// Actual code
result.add(new CmsGotoMenuEntry(hoverbar));
result.add(new CmsGotoExplorerMenuEntry(hoverbar));
// Desired code
result.add(new CmsGotoMenuEntry (hoverbar));
result.add(new CmsGotoExplorerMenuEntry(hoverbar));

Fig. 2: Actual code vs aligned code (first snippet)

The single aspect that makes this method highly under-
standable, according to the developers, is the easy/clear
task it implements. Other positive aspects of the method
as for understandability (Q2) are that it is very tidy (good
readability, in general) and it implements a single task. Carlo
highlighed that the names are very well chosen. However,
both Salvatore and Giovanni put emphasis on the many
repetitions in the code. Salvatore said that, to some extent,
repetition and alignment are positive, because they help the
brain ignoring part of the code that is not useful to read. On
the other hand, Giovanni thinks that repetitions make the
method “poorly maintainable and less elegant”; however,
he does not think that repetitions hinder understandability.

Three developers agreed that there is no negative aspect
in terms of understandability, and it would not be possible
to have a more understandable version of the method (Q3).
On the other hand, Salvatore thinks that the repetition of the
actual parameter “hoverbar” for all the constructors and the
lack of alignment forces the reader to check if it is actually
true that all the constructors are called with such an actual
parameter, and this slightly increases the time needed to
understand the method. He would have aligned all the
actual parameters of the constructors in the list (Fig. 2).
Matteo thinks that the name “hoverbar” is not very clear,
and documentation is lacking for it. He also thinks that
the abstract return type makes the method slightly less
understandable, because it is necessary to understand what
kinds of concrete types can be returned. He said that, from
his experience, there is often a trade-off between understand-
ability and maintainability. In this case, using abstract types
is necessary to make the method more maintainable (e.g., all
the classes that implement the same interface have the same
signature, and it is easier to extend this system). However,
this makes the implemented mechanism (and the system)
harder to understand.

While reading and understanding the method, the de-
velopers used different approaches. Some of the developers
looked at class and internal dependencies of the method
(i.e., the context in which such method exists); some looked
as well at some of the classes used in the method and they
inferred that they are very similar, which was helped by
the names; some focused on the method itself. One of them
searched on the internet for “hoverbar” to understand its
meaning in this context. One of the developers also looked
for information about the entire system and the repository
(e.g., number of developers) and he looked at the documen-
tation of the implemented interface to get information about
the method to understand.

6.3.2 The Least Understandable Method
Four developers out of five did not understand the sec-
ond method. They admitted that fully understanding the

method would have required much longer, and they asked
to stop after about 5 minutes. One of them, on the other
hand, took some extra time to analyze the classes used in
the method (about 8 minutes, in total). In the end, he said
he understood the method and he was able to describe what
the method did. Three developers said that the method is
not understandable (Q1), while the other two, surprisingly,
said that the method is understandable. The developer,
who did not fully understand the method but perceived it
as understandable, explained that he roughly understood
the method, but the lack of knowledge about the system
made him say that it would take more time to properly
understand it.

Two developers highlighted that the positive aspects of
the method (Q2) are that it implements just one task. One of
them also generally liked the names used for the identifiers.
On the other hand, all the developers listed many negative
aspects. The most negative aspect highlighted is the com-
plete lack of comments and internal documentation (all the
developers). Also, the fact that the method belongs to a big
and untidy class makes the method itself less understand-
able (2 out of 5 developers). The developers also generally
complained about the low readability of the method (4 out
of 5 developers). Matteo and Carlo pointed out that another
negative aspect is that the method is highly dependent on
some internal classes/methods that are hard to understand.
Stefano, Salvatore and Matteo did not like the presence of
many exit points for the method; Salvatore and Matteo also
said that the high number of parameters strongly reduces
its understandability (confirming what we found answering
RQ1), and Matteo precised that some of the parameters
are not used at all. Stefano and Matteo did not like some
identifiers names (e.g., areTablesIdentifiers), which they
considered potentially misleading. Matteo thinks that this
method has too many responsibilities. For example, the first
thing the method does is to load a schema, based on the
value of one of the parameters, but he thinks that it would be
better to directly have a parameter with the loaded schema.
Also, he thinks that the application domain is quite complex.

All the developers answered Q3 saying that they would
improve the understandability of the method by adding
comments and improving its readability. Matteo said that he
would (i) change the order of the parameters (e.g., putting
the schema as the first parameter), (ii) use exceptions instead
of SCHEMA_NOT_FOUND instances, and (iii) start with a check
for exceptional behaviors (that lead to SCHEMA_NOT_FOUND)
and the normal behavior after that.

Also, in this case, the developers used different ap-
proaches to read and understand the snippet. One developer
tried to look for the internal documentation of the used
classes (which is lacking); two developers looked at the code
of the used classes; one developer strongly relied on the
names of the identifiers. Finally, one developer said that he
would have used the debugger to understand the snippet
(i.e., he would have analyzed the dynamic behavior of the
code). He explained that understanding this snippet only
looking at code statically would take longer.

6.3.3 The Most Controversial Method
Four out of five developers were able to understand the
method with a low effort ( 2 minutes). One of the developers
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took longer (5 minutes). He explained that he had no expe-
rience with SQL dialects. However, in the end, all of them
were able to understand the method. Three of the develop-
ers were familiar with SQL dialects and Hibernate, and they
took shorter than the average to understand the snippet. All
the developers agreed that the method is understandable
(Q1). However, three out of five developers explicitly said
that a good knowledge of SQL dialects and, partially, of
Hibernate is necessary to understand this method; con-
versely, one developer said that the lack of knowledge on
SQL dialects would have just increased the time needed
to understand, but the method would have been easy to
understand anyway.

All the developers appreciated the good names and the
good quality of comments and Javadoc (Q2) and four out of
five developers said that there are no negative aspects of this
method in terms of understandability and that they would
not change it (Q3). Matteo, on the other hand, said that, in
general, he would have divided the method in three private
methods: one for the columns, one for the SQL properties,
and one for the functions. However, he said that it is not
strictly necessary in this specific case, because the dialect is
easy.

The interviews suggest that this method was the most
controversial in our study due to differences in background
among the developers. Such subjectivity may have strongly
influenced the time needed to understand the snippet.
While the subjectivity of this method emerged from the
survey we conducted, on the other hand the five developers
we interviewed seemed to agree that the method is under-
standable. This is most likely due to the fact that they are all
professional and experienced developers.

6.3.4 The Most Deceiving Method
Three out of five developers said that they understood the
method and that they found the method understandable
(Q1). Two developers said that it would take longer to fully
understand it. On average, the developers took about 5
minutes to understand the method. Interestingly, when we
asked them to precisely describe what the method does,
one of the developers noticed that he actually did not
understand the reason why a for loop was in the method.
Therefore, in the end, only two developers actually under-
stood the method.

Differently from the other methods for which developers
often highlighted more or less the same positive/nega-
tive aspects in terms of its understandability (Q2), for this
method, each of them talked about a different positive
aspect. Salvatore said that, despite the nesting, the condi-
tions are quite simple and the blocks of the conditions are
short. According to him, this facilitates the understanding
of causes and effects in the code. Conversely, Matteo said
that he did not like the many nested if controls, which
make it hard to understand, according to him. Giovanni
liked the names used, and he found them quite clear. Carlo,
instead, did not like them, but he said that the fact that
all the internal methods called in this snippet were in the
same class improved the understandability of the method.
Stefano did not find any positive aspects about this method.
On the other hand, the developers said that some names,
such as “surrogate”, are uncommon and abstract, and they

TABLE 7: Factors mentioned by the participants

Factor MM SG GG SD CB

Quality of Identifiers × × × × ×

Code Readability × × × ×
Presence of Comments × × × ×

# Exit Points × × ×
Documentation Quality × × ×
# Responsibilities × × ×
Quality of the Class × × ×

# Parameters × ×
Nesting × ×
Quality of Dependencies × ×
Application Domain × ×
Code repetitions × ×
Broken Lines × ×
Control Flow × ×

may hinder the understandability of the method (2 out
of 5 developers); Matteo points out that the name of the
method itself (processChar) is too generic and ambiguous.
The redundancy in some parts of the method is definitely
a negative aspect. The method contains two very similar
blocks of code (4 out of 5 developers). They all suggest to
remove this repetition (Q3).

To understand this snippet, three developers looked only
at the code of the method, while two of them found it useful
to look at the only method in the class that calls the snippet’s
method.

Table 7 provides a summary of the factors that the
developers mentioned at least once during the interview.
The quality of the identifiers is mentioned by all of them,
but also code readability and comments seem to be valuable,
according to most of them.

Summary for RQ3. The interviewed developers agree
on a subset of aspects that are desirable (e.g., good
identifiers) or undesirable (e.g., too many exit points)
for having understandable code. However, we found
no agreement on many other aspects and, above all,
on the adopted understanding process.

6.4 Discussion

In our previous study [19], we showed that no single metric
has a non-weak correlation with any proxy of understand-
ability. Increasing the size of our dataset further reduced the
correlations. Most noticeably, the number of metrics with a
correlation with TNPU higher than |0.1| were ten in our
previous study, and this number has been reduced to just
one with the larger dataset.

We also tried to combine these metrics in classification
and regression models to predict different aspects of code
understandability. In a previous study, Trockman et al.
[32] used LASSO regression to classify ABU50%, and they
achieved an AUC of 0.64. We achieved a higher AUC for
the classification of ABU50% (0.72) and a comparable AUC
for PBU (0.69) and BD50% (0.70). However, looking at the
F-Measure, it is clear that the prediction model would not
be useful in practice. Compared to the readability models,
understandability models are much less effective and prac-
tically unusable. Combining metrics in regression models to
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predict TNPU, AU and TAU also shows the limits of the
metrics, which can achieve a maximum correlation of 0.37
(with AU). Therefore, we can confirm the negative result of
our previous study: the metrics we investigated are not
enough to capture code understandability. However, as
previously hinted by Trockman et al. [32], combining metrics
helps to achieve better results as compared to single metrics
for most of the understandability proxies.

In the interviews that we conducted, we found that
developers perceive readability as an aspect that highly
influences code understandability. However, this contradicts
our quantitative results. It is possible that we did not capture
any correlation between readability and understandability
because we measured the understandability effort only by
using the time spent to understand a snippet as a proxy. A
factor that we ignore is the mental effort actually needed
to understand a snippet. It could be that unreadable code
makes developers more tired in the long run, but when
focusing on a single snippet this does not result in noticeable
differences in terms of comprehension time and it does
not affect the correctness of the understandability process.
Experienced developers, who had the chance of working
both with readable and unreadable code for longer periods,
consider this an important aspect because they feel it affects
their overall performance. The same may be true for other
aspects associated to code readability (such as the quality
of identifiers [14]). Most importantly, our interviews with
developers show that each developer uses her own under-
standing process. When code is harder to understand, some
look at the related classes, while others say they would run
the code and use the debugger to understand it. One of
the most surprising facts is that some developers found the
least understandable snippet to be understandable. Finally,
we found that the personal background of developers plays
a crucial role in understanding: when the knowledge of a
concept is lacking, it takes time to acquire such a knowledge.
This may be the main limit of the metrics we introduced: We
measure the “knowledge” contained in a snippet (e.g., with
MIDQ and AEDQ), but we do not measure the knowledge
that the developer already has. Our metrics may be valid
for the “average” developer, but when we try to measure
understandability at a personal level, they are not enough.

To further confirm this, we tried to check how the values
of our proxies for code understandability vary among differ-
ent evaluators (for the same snippet) and different snippets
(for the same evaluator). For each proxy P , we computed the
mean variance of P among different evaluators (for the same
snippet) using the formula Vs(P ) =

∑n
i=1 var(Pi)

n , where n is
the number of snippets in our dataset and Pi is the vector
containing the values of P for the snippet i. The higher
Vs, the larger the differences in terms of understandability
among different evaluators for the same snippets. Similarly,
we computed the variations among different snippets for
the same evaluator as Vd(P ) =

∑n
i=1 var(Pi)

n , where n is the
number of developers and Pi is the vector containing the
evaluations of the developer i. Again, the higher Vd, the
higher the differences in understandability among differ-
ent snippets for the same evaluator. We report in Table 8
both Vs and Vd for TNPU, AU, and TAU, i.e., the numeric
proxies we previously defined. We also report the values

TABLE 8: Mean variance of the proxies among snippets and
developers (lower values imply more similar scores).

AU TNPU TAU

Vs
P (BsC) 0.11 61,683 0.08

Vs
P (MsC) 0.06 4,209 0.03

Vs
P (PhD) 0.09 24,924 0.10

Vs
P (Professional) 0.07 42,425 0.07

Vs
P 0.13 34,294 0.10

Vd
P 0.12 26,109 0.09

of Vs for the different categories of participants. The table
shows that Vs is slightly higher than Vd for all the proxies.
This shows that the understandability depends more on
the developer than on the snippet he/she is evaluating,
even if such a difference is not very high. Also, it is worth
noting that Vs(AU) decreases if we divide the developers in
categories based on their professional position. This means
that different categories of developers achieve more similar
levels of correctness. Specifically, professional developers
and Master’s students seem to be the most cohesive groups
in terms of correctness (i.e., the groups that exhibit the
lowest variance). The same happens (but with lower dif-
ferences) for Vs(TAU). On the other hand, for Vs(TNPU)
there are categories with lower inter-group variations (i.e.,
Master’s students and PhD students), while others have
higher variations (i.e., Bachelor’s students and professional
developers).

Finally, because of this result, we tried to use the pro-
fessional position of the developer as an additional feature
in our combined models (RQ2). We observed a slight im-
provement in the regression performance of TAU (Correla-
tion: +0.07; MAE: -0.02) and AU (Correlation: +0.02; MAE:
+0.00), while we achieved lower classification performance
for BD(% F-measure: -0.06; AUC: -0.02), and comparable re-
gression and classification performance for PBU (F-measure:
-0.02; AUC: +0.01), ABU(% F-measure: +0.07; AUC: -0.02),
and TNPU (Correlation: +0.03; MAE: +7.5). However, the
improvement relates only to the maximum scores achieved:
not all the machine learning techniques achieve better re-
sults.

Therefore, we can conclude that the effort in the predic-
tion of code understandability should be directed in cap-
turing subjective aspects of developers – their background
knowledge and their experience – not only in quantitative
terms (i.e., years of experience) but also in qualitative terms:
the interviews suggest that when developers are not familiar
with the topics in the code that they need to understand,
they need to spend some time to search for information
about them. Introducing new developer-related metrics con-
sidering their experience with specific topics (e.g., JDBC
APIs) or design patterns (e.g., bridge design-pattern) could
be useful to capture such aspects.

7 THREATS TO VALIDITY

Threats to construct validity, concerning the relation be-
tween theory and observation, are mainly due to the mea-
surements we performed, both in terms of the 121 metrics
that we studied as well as when defining the six dependent
variables for the understandability level. Concerning the 121
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metrics, we tested our implementation and, when needed
(e.g., for the IMSQ metric during the identifiers splitting/-
expansion), relied on manual intervention to ensure the
correctness of the computed metrics. As for the dependent
variables, we tried to capture both the perceived and the
actual code understandability in many ways. However, dif-
ferent results might be achieved combining correctness and
time in different ways.
Threats to internal validity concern external factors that
we did not consider that could affect the variables and the
relations being investigated. Since two of the understand-
ability proxies are time-related (i.e., they are based on the
time participants spent while understanding the code), it is
possible that some participants were interrupted by external
events while performing the comprehension task. For this
reason, we replaced outliers for TNPU in the computation
of TAU with the maximum TNPU that was not an outlier. An
outlier was a participant requiring more than Q3+(3×IQR)
seconds to understand a code snippet, where Q3 is the third
quartile and IQR is the Inter Quartile Range. We used leave-
one-out cross-validation to evaluate all the models used
to answer RQ2. This means that some of the evaluations
of the same developer were used in the training set. This
could allow the models to learn some peculiarities about
the preferences of the developer. It is worth noting that
such evaluations represent a large minority of the training
instances (< 2%) and they are unlikely to heavily affect
the trained model. Also, our assumption is that, in a real
use-case scenario, developers might contribute understand-
ability evaluations to the training set. We acknowledge that
this assumption may not hold in all contexts. Finally, as for
RQ3, the think-aloud strategy we used to get qualitative
data could have affected the performance of the developers.
We did not ask questions while the developers were reading
and understanding the code to minimize such a threat.
Threats to conclusion validity concern the relation between
the treatment and the outcome. The results of RQ2 may
depend on the used machine learning techniques. To limit
this threat, we used the most common and widespread
machine learning techniques, being careful to choose them
from different families, such as tree-based, bayesian, and
neural networks. Also, such results may depend on the
parameters used for the machine learning techniques. We
always used the standard parameters provided by Weka [48]
for all the machine learning techniques.
Threats to external validity concern the generalizability of
our findings. Our study has been performed on a large, but
limited, set of metrics and by involving 63 participants com-
prehending a subset of 50 methods extracted from 10 Java
systems. We increased the number of observation from our
previous study [19] by 22% to improve the generalizability
of our findings. All of the results hold for the considered
population of participants and for Java code. Larger studies
involving more participants and code snippets written in
other languages should be performed to corroborate or
contradict our results. The same is true for the developers
involved in RQ3 (i.e., they were from Italy with a similar
background). We tried to select developers with diverse
specializations: The three professional developers work in
different areas (Android, front-end, back-end); one of the
two PhD students had a previous experience in industry,

while the other one did not. It is worth noting that it is very
hard involving developers in such a long interview (more
than a hour each). Since we observed differences in their
evaluation of code understandability, a more comprehensive
study with a more diverse set of developers would be
needed to generalize our results, and it may highlight other
factors that underline the subjectivity of code understand-
ability.

8 CONCLUSION AND FUTURE WORK

We presented an empirical study investigating the correla-
tion between code understandability and 121 metrics related
to the code itself, to the available documentation, and to
the developer who is understanding the code. We asked 63
developers to understand 50 Java snippets, and we gathered
a total of 444 evaluations. We assessed the participants’
perceived and actual understanding for each snippet they
inspected and the time they needed for the comprehension
process. Our results demonstrate that, in most of the cases,
there is no correlation between the considered metrics and
code understandability. In the few cases, where we observed
a correlation, its magnitude is very small. Combining met-
rics generally results in models with some discriminatory
power (classification) and with a higher correlation, com-
pared to single metrics (regression). However, such models
are still far from being usable in practice for the prediction
of understandability. Finally, we reported interviews with
software developers, which provide useful insights about
what makes code understandable or not understandable. We
noticed that each developer puts emphasis on some aspects
of understandability, and they give a different level of im-
portance to each aspect. Note that we used shallow/classic
models in our study; deep models from the deep learning
comunity should be used as part of future work, given their
power to abstract and model complex relationships between
input data and several abstraction layers, similar to the
cognitive processes in the humans brain; as suggested by
the interviews, developers exhibited some comonalities but
also variabilities in the understandability process that might
not be captured by classic models, thus, shallow models are
not the best choice to predice/measure understandability.

Our study lays the foundations for future research on
new metrics actually able to capture facets of code un-
derstandability. In our opinion, the state-of-the-art lacks
developer-related metrics. Therefore, we think that future
research should be aimed at defining more of such metrics
to properly capture code understandability. To enable the
research community to investigate this direction further, we
publicly release our new dataset [33].
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