
Towards Slice-Based Semantic Clone Detection
Hakam W. Alomari and Matthew Stephan

Department of Computer Science and Software Engineering
Miami University

Oxford, Ohio 45056

Abstract—This paper presents our proposed approach for
detecting code clones based on similar slices of different versions
of large software systems. We begin by presenting our initial
thoughts on realizing software slice clone detection. We describe
our initial results obtained by means of scripts to identify clones
at different levels of granularity. The clones between versions
are represented as pairs of cloned slices. Our results include a
case study of over 191 versions of the Linux kernel, spanning
over 10 years. In the near future, we plan on experimenting
with established clone detectors to realize a complete and robust
analysis approach.

I. INTRODUCTION

Software maintenance of evolving large software systems
is an ongoing challenge. Clone detection is one approach
that can assist in maintaining systems by identifying recur-
ring patterns of use. There exists many techniques for clone
detection [1]. Most of them are either text- or syntactic-
based. These techniques are good at detecting Type-1, Type-
2, and Type-3 clones. However, they may miss some Type-4,
semantic, clones. Type-4 clone identification is challenging
as it can be difficult to determine precisely semantically
similar components [2], [3]. To help understand semantic
similarities, program slicing is a widely used and well-known
approach for comprehending and detecting semantic properties
of software [4], [5].

In this position paper, we consider semantic clone detection
by means of slice similarity. We consider two code fragments
semantically similar if their slices are similar. We present our
ideas in the form of our early experiments in detecting clones
in program slices on the Linux kernel across different versions.
Using our scalable slicer, srcSlice [5], we identify clones
through our existing slice-based metric called ”hashSize” [6].
We detect clones at three different granularity levels. We
present our initial results and future plans in order to garner
suggestions and collaborate within the cloning community.

II. RELATED WORK

Using text-based approaches to detect structural similarities
between program versions has obvious utility in software
evolution. However, results of existing tools may be unsatis-
factory because their view is based on program text or tokens
only rather than program behavior [1]. They may be sensitive
and unable to identify clones that are substantially modified
structurally, but equivalent semantically.

There exists syntactic-based source code clone detection
techniques that are tree- and graph- based. Tree-based tech-
niques compare Abstract Syntax Trees (ASTs) of code frag-
ments to detect clones. Graph-based techniques compare Pro-
gram Dependence Graphs (PDGs) using sub-graph isomor-

Fig. 1. Overview of the Proposed Approach

phism to detect source code clones. Both types of these
techniques do not scale well for multiple versions of large
software systems [5] nor are able to find Type-4 clones.

Other metrics-based techniques calculate different metrics
from the source code and compare these metric values to
indicate cloned fragments [1]. These techniques compute
metrics using only syntactic information of the source code
and use that to model semantic information. For example, they
compute cyclomatic complexity by counting the number of
conditionals/branches to infer semantic complexity. Semantic
information can be much more difficult to derive and model.

III. PROPOSED APPROACH

As we show in Figure 1, we begin by downloading all
consecutive versions of the Linux kernel from its subversion
repository. We then convert the source code into srcML
format [7] in order to use srcSlice to build a system dictio-
nary with slice profiles for all slicing variables. srcSlice is
a slicing tool implementing forward, static, inter-procedural,
and decompositional slicing [5]. srcSlice computes a slice
profile line by line for each variable as it is encountered.
After srcSlice computes all the slice profiles, it performs a
single pass through all profiles to take into account dependent
variables, function calls, control-flow edges, and direct pointer
aliasing to generate the final slices.

We encode the slice profiles to strings and feed those
encoded strings to an MD5 1 hash algorithm to produce a 128-
bit hash value, which we express as a 32 digit hexadecimal
number. The encoding process considers different granularity
of slices: variables, functions, and files. We compare slice
hashes for all granularity across all versions. varES, funcES,
and fileES represent the number of variables, functions, and
files that have similar slice profiles across versions, respec-
tively. Ideally, the comparison process will have linear time

1Available online: http://www.ietf.org/rfc/rfc1321.txt

978-1-5386-6430-8/18 c© 2018 IEEE IWSC 2018, Campobasso, Italy

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

58



Fig. 2. Boxplot for varES, funcES, and fileES of 191 Linux kernel versions.
The upper line values exceed the top of the graph and their true values appear
on the labels above their respective up-bar boxes.

complexity since the hashed values are hexadecimal numbers.
We recommend saving clone pair information in a database
for further analysis.

IV. DISCUSSION

In this section we present our initial results along with our
motivation of why, how, and whom slice-based clone informa-
tion can help. Our hypothesis and hope is that this information
can serve as a complement or supplement to existing mainte-
nance and comprehension approaches. We believe that in order
to help understand all types of clones, we need to raise the
level of abstraction beyond simply syntactic clones. This can
be achieved by the decomposition/composition mechanisms
employed in our srcSlice approach. In our case, a sequence
of lower-level clones, that is, similar slices at the variable-
level, are composed to form a single higher level clone at the
function and file levels to encapsulate semantics. For example,
implementing a new feature is comprised of all small clones
that a programmer performed to develop the feature. These
clones include any refactoring and modifications which are
needed to achieve the goal.

A. Motivation and Research Questions

We have begun considering a number of research questions:
(RQ1) what are some of the cloning patterns, (RQ2) what are
the typical size of clones, and (RQ3) how common are the
clones. Future questions we are considering include (RQ4)
which clones can be detected only using slice-based clone
detection, (RQ5) who could benefit from slice-based clone
detection, and (RQ6) what will be the precision and recall
of slice-based clone detection approaches.

B. Initial Results

We perform clone pair detection using comparison scripts.
We apply three measures of semantic clone detection to 191
releases of Linux kernel, spanning 10 years. We use the values
of these measures as data points for classification. We first
take a holistic view of all clones in subset of the history, and
then use descriptive statistic methods to classify them. We
employ five quartiles for categorization: Q0 to Q4. We use
Inter-Quartile Range (IQR = Q3 - Q1) as a measure of spread.
It is helpful in identifying outliers. We used the 1.5 x IQR rule:
Anything below Q1 - (1.5 x IQR) or above Q3 + (1.5 x IQR)
are outliers. The Boxplot graph in Figure 2 shows the median
(Q2) as the line through the middle, quartiles, and outliers.

Fig. 3. Histogram for distribution of clones for 191 Linux kernel versions.

Each box illustrates the region between Q1 and Q3. The lines
leaving the boxes show the range of values that are not outliers.

Based on our classification, we distribute our data into five
regions representing classes of clone size for each granularity:
extra-small, small, medium, large, and extra-large. We present
this in Figure 3 for each of the varES, funcES, and fileES
measures. For example, the percentage of clones at the variable
level that have a size <= 31 LOC is equal to 25.1%. We
first observe most of the clones are small or extra small.
Specifically, for all three granularities, approximately 75% of
the clones are small or extra-small. However, notable larger
clones also exist. Larger clones are often those that touch
almost every artifact in the system. Our manual inspection of
selected versions indicates most commonly occurring clones
were those related to initialization of new hardware drivers.
Adding new drivers was often associated with the introduction
of new clones. One possible explanation is that developers
used existing tested and working driver code rather create it
from scratch.

V. CONCLUSION

We presented our ideas and initial results for detecting
semantic clones using program slices. We believe this is a
new perspective on semantic clone detection, allowing for
large system and multiple-versions cloning analysis. Future
work involves experimenting with various established clone
detectors, such as Nicad and CCFinder. We plan to continue
this line of research and provide semantic clone information
that can serve as a complement to current syntactical-based
approaches to help maintainers understand program clones
across versions.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queens School of Computing, Tech. Rep. 2007-541, 2007.

[2] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in ICSE. Washington, DC,
USA: IEEE, 2007, pp. 96–105.

[3] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in ICSE. New York, NY, USA: ACM, 2008, pp. 321–330.

[4] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,” Sci.
Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.

[5] H. W. Alomari, M. L. Collard, J. I. Maletic, N. Alhindawi, and O. Meq-
dadi, “srcslice: Very efficient and scalable forward static slicing,” J. Softw.
Evol. Process, vol. 26, no. 11, pp. 931–961, Nov. 2014.

[6] H. W. Alomari, M. L. Collard, and J. I. Maletic, “A slice-based estimation
approach for maintenance effort,” in ICSME. IEEE, 2014, pp. 81–90.

[7] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An infrastructure
for the exploration, analysis, and manipulation of source code: A tool
demonstration,” in ICSM. IEEE, 2013, pp. 516–519.

59


