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Abstract This paper presents an automated framework for identifying and repre-
senting different types of variability in Simulink models. The framework is based
on the observed variants found in similar subsystem patterns inferred using Simone,
a model clone detection tool, and an empirically derived set of variability operators
for Simulink models. We demonstrate the application of these operators to six exam-
ple systems, including automotive systems, using two alternative variation analysis
techniques, one text-based and one graph-based, and show how we can represent
the variation in each of the similar subsystem patterns as a single subsystem tem-
plate directly in the Simulink environment. The product of our framework is a single
consolidated subsystem model capable of expressing the observed variability across
all instances of each inferred pattern. The process of pattern inference and vari-
ability analysis is largely automated and can be easily applied to other collections
of Simulink models. We provide tool support for the variability identification and
representation using the graph-based approach.
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1 Introduction

Software variability management (SVM) research has gained a lot of interest in
the last two decades, especially for its vital role in developing reusable software
product line (SPL) assets [5]. SVM is a complex, multifaceted problem that inter-
sects with several traditional software engineering topics, including software config-
uration management, run-time dynamism, domain specific languages, model-driven
engineering, and software architecture. SVM offers a powerful toolbox to help man-
age complexity in these fields and is rapidly evolving into an independent research
area that is of vital importance for systems that include configuration and run-time
dynamism of components, in addition to software product lines.

One facet of SVM is variability modelling, an enabling technology for delivering
a variety of related software systems in a fast, consistent and comprehensive way.
The key is to build a common base from which to efficiently express and manage
variations. SVM is often closely associated with SPLs, which are mainly aimed at
creating and maintaining a collection of similar software systems derived from a
shared set of software assets. Variability can be expressed as stand-alone models,
such as feature models in SPLs, or as annotations on a base model, by means of
extensions to the base modelling language, such as UML profiles with stereotypes
[15].

Variability modelling continues to gain interest from industry, and variability
support in modelling tools, including Mathworks’ Simulink and IBM’s Rhapsody, is
one of their most desirable features. Several industrial standards, such as SysUML
and AUTOSAR, are actively working to create extensions that help to express vari-
ability.

Understanding variability in existing systems and the variation points of their ar-
tifacts is the first and most important step towards enabling variability modelling.
Many methods have been proposed for analyzing commonality and variability from
a requirements point of view, as well as connecting the analysis to the implemen-
tation [11, 21]. However, there remains a need for techniques that analyze existing
system requirements and implementations for commonality and variability in an
automated way.

In this chapter we present a framework for identifying variability candidates from
existing software intensive systems modelled using Simulink [26], the most popular
modelling languages for hybrid hardware/software systems. Automotive Simulink
models are particularly prone to cloning due to the copy-paste authoring paradigm
of the Simulink IDE, and the inherent similarity of elements and tasks in automotive
applications. Our framework, shown in Figure 1, uses an efficient model clone de-
tection technique to automatically identify subsystem variants from a large pool of
existing Simulink models. Once all potential variants are identified, the framework
classifies and represents those variants using a set of empirically-derived variability
operators.

The framework is aimed at providing tool support to automatically represent
model subsystem variability directly in the Simulink environment, and thus pro-
vide practical assistance to engineers to identify, understand, and visualize patterns
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Fig. 1 Variability Identification and Representation Framework

of similar subsystems in a large model set. This understanding may help, among
other things, in reducing maintenance effort and bug identification at an early stage
of software development, both on the model level and before the model semantics
are transformed into actual code. We demonstrate our framework on six systems
from the Mathworks demonstration set and describe the stages of our framework
using a running example.

In a previous short paper, we proposed a set of empirically-derived variability
operators for Simulink models [2], and provided evidence of the soundness of our
operators based on the analysis of six Simulink systems representing a range of
diverse applications. In this chapter, we use those proposed variability operators as
the basis of an automated framework for the identification and representation of
system variability in Simulink models.
The contributions of this chapter are as follows:

• Detailed description of an automated framework for the identification and repre-
sentation of variability in Simulink models.

• Demonstration of a text-based tagging approach to identify and mark variability
in Simulink models using our previously proposed set of variability operators.

• Demonstration of a graph-based approach for the identification and representa-
tion of variability in Simulink models.

• Tool support for the graph-based approach that works directly in the Simulink
IDE environment.

The following sections provide a detailed description of the proposed framework
and our experience with it.

2 Variability Identification and Representation Framework

Figure 1 presents the stages of framework.

Stage 1: Variability Identification. This stage uses model clone detection to
identify groups of similar subsystems in a repository of Simulink models. We
used Simone [1], a hybrid text_based model clone detection tool, to identify
common Simulink subsystem patterns and variability candidates. In this frame-
work we have configured Simone to identify subsystems that are at least 80%
similar to each other as a first approximation. Similar subsystems are clustered
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System {
Name "add"

Block {
BlockType Inport
Name "In1"
ZOrder 1
IconDisplay "Port number"

}
Block {

BlockType Inport
Name "In2"
ZOrder 2
Port "2"
IconDisplay "Port number"

}
Block {

BlockType Sum
Name "Add"
Ports [2, 1]
ZOrder 3
InputSameDT off
OutDataTypeStr "Inherit: Inherit via internal rule"
SaturateOnIntegerOverflow off

}
Block {

BlockType Outport
Name "Out1"
ZOrder 4
IconDisplay "Port number"

}
Line {

SrcBlock "In1"
SrcPort 1
DstBlock "Add"
DstPort 1

}
Line {

SrcBlock "In2"
SrcPort 1
DstBlock "Add"
DstPort 2

}
Line {

SrcBlock "Add"
SrcPort 1
DstBlock "Out1"
DstPort 1

}
}

(a) Variant A - Addition

System {
Name "subtract"

Block {
BlockType Inport
Name "In1"
ZOrder 1
IconDisplay "Port number"

}
Block {

BlockType Inport
Name "In2"
ZOrder 2
Port "2"
IconDisplay "Port number"

}
Block {

BlockType Sum
Name "Subtract"
Ports [2, 1]
ZOrder 5
Inputs "+-"
InputSameDT off
OutDataTypeStr "Inherit: Inherit via internal rule"
SaturateOnIntegerOverflow off

}
Block {

BlockType Outport
Name "Out1"
ZOrder 4
IconDisplay "Port number"

}
Line {

SrcBlock "In1"
SrcPort 1
DstBlock "Subtract"
DstPort 1

}
Line {

SrcBlock "In2"
SrcPort 1
DstBlock "Subtract"
DstPort 2

}
Line {

SrcBlock "Subtract"
SrcPort 1
DstBlock "Out1"
DstPort 1

}
}

(b) Variant B - Subtraction

Fig. 2 Textual Representations of example subsystem variants A & B

into clone classes, sets of subsystems that are similar to one another. Figure 2
shows an example of two instances of the same subsystem pattern as identified
by Simone. Variant A takes two numbers and adds them together, while Variant
B subtracts one number from the other - both models have two inports and one
outport. Section 3 provides a more detailed discussion of this first stage.

Stage 2: Variability Tagging. This stage uses two techniques, #ifdef preproces-
sor text tagging and subgraph similarity algorithms, to identify and tag subsystem
variability between the subsystems in each clone class identified in Stage 1. This
identification and tagging process is based on a set of proposed variability opera-
tors that we have empirically inferred from a large set of observations of variance
in pattern candidates identified by Simone. Section 4 presents our proposed vari-
ability operators for Simulink. The example in Figure 2 shows portions of the
model that are similar among all instances (highlighted in green), while the ele-
ments in different colours represent the variation between the two models. This
stage is aimed at automating the identification of commonality and variability
in this way, and at marking the type of variability according to our variability
operators. A detailed description of this stage is presented in Section 5.

Stage 3: Variability Representation. This stage presents our approach to repre-
senting the identified Simulink subsystem variability using Simulink’s built-in
Variant Subsystem Block capability. Referring to our running example in Fig-
ure 2, portions of the model that are similar among all instances (highlighted in
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System {
Name "varianceDemo3"
Block {

BlockType Inport
Name "In1"
ZOrder 1
IconDisplay "Port number"

}
Block {

BlockType Inport
Name "In2"
ZOrder 2
Port "2"
IconDisplay "Port number"

}
Block {

BlockType SubSystem
Name "TopLevelVariant\n"
Ports [2, 1]
ZOrder 6
Variant on
System {

Name "TopLevelVariant\n"
Block {

BlockType Inport
Name "In1"
ZOrder 1
IconDisplay "Port number"

}
Block {

BlockType Inport
Name "In2"
ZOrder 3
Port "2"
IconDisplay "Port number"

}
Block {

BlockType SubSystem
Name "AddSubsystem\n"
Ports [2, 1]
ZOrder 4
VariantControl "Variant"
System {

Name "AddSubsystem\n"
Block {

BlockType Inport
Name "In1"
ZOrder -1
IconDisplay "Port number"

}
Block {

BlockType Inport
Name "In2"
ZOrder -2
Port "2"
IconDisplay "Port number"

}
Block {

BlockType Sum
Name "Add"
Ports [2, 1]
ZOrder -2
InputSameDT off
OutDataTypeStr "Inherit: Inherit via internal rule"
SaturateOnIntegerOverflow off

}
Block {

BlockType Outport
Name "Out1"
ZOrder -3
IconDisplay "Port number"

}

}
}
Block {

BlockType SubSystem
Name "SubSubsystem"
Ports [2, 1]
ZOrder 5
VariantControl "Variant1"
System {

Name "SubSubsystem"
Block {

BlockType Inport
Name "In1"
ZOrder -1
IconDisplay "Port number"

}
Block {

BlockType Inport
Name "In2"
ZOrder -2
Port "2"
IconDisplay "Port number"

}
Block {

BlockType Sum
Name "Subtract"
Ports [2, 1]
ZOrder -31
Inputs "+-"
InputSameDT off
OutDataTypeStr "Inherit: Inherit via internal rule"
SaturateOnIntegerOverflow off

}
Block {

BlockType Outport
Name "Out1"
ZOrder -3
IconDisplay "Port number"

}
}

}
Block {

BlockType Outport
Name "Out1"
ZOrder -2
IconDisplay "Port number"

}
}

}
Block {

BlockType Outport
Name "Out1"
ZOrder 4
IconDisplay "Port number"

}
Line {

SrcBlock "In1"
SrcPort 1
DstBlock "TopLevelVariant\n"
DstPort 1

}
Line {

SrcBlock "In2"
SrcPort 1
DstBlock "TopLevelVariant\n"
DstPort 2

}
Line {

SrcBlock "TopLevelVariant\n"
SrcPort 1
DstBlock "Out1"
DstPort 1

}
}

Fig. 3 Textual Representation of the Variance Model for variants A and B of Figure 2

green) are placed directly into the new variance model, with some renaming for
sources and destinations pertaining to Variant Subsystem Blocks. The variability
(for example, the “Add” block of Variant A (highlighted in pink), and the “Sub-
tract” block of Variant B (highlighted in cyan)) must be encapsulated in Variant
Subsystem Blocks for the corresponding variability operators, with additional
source lines to implement the variants. Figure 3 presents the textual represen-
tation of the created variant model representing both Variant A and Variant B.
The sections highlighted in green are the common elements from Variant A and
Variant B, the pink highlighting represents the “Add” block from Variant A, and
the cyan highlighting represents the “Subtract” block from Variant B. All of the
other necessary information to construct the textual representation of the vari-
ance model is available from the text of Variants A and B. Section 6 discusses
variability representation in Simulink based on our proposed operators.
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System Name # Subsystems # Clone Pairs # Clone Classes
Automotive 357 189 24
Aerospace 188 62 15
Industrial 16 4 2
Features 935 85 25
General 146 11 7
Others 28 6 4

Table 1: Simone Clone detection results at a difference threshold of 20%

We believe that automating the application of variability operators will streamline
the process of representing subsystem variability in Simulink Models, and reduce
the risk of error introduced through manual representation. In the following sections
we discuss the stages of our approach in more detail, beginning with a discussion
of the automated similarity identification inferred by Simone. We then introduce
two options for tagging variation in the identified sets of similar subsystems, one
based on diff and #ifdef on the normalized textual representation of the models, and
one using graph matching algorithms to determine identical sub-graphs. Finally, we
discuss the final step of translating the tagged variations to Simulink Variant Sub-
system Blocks, completing an end-to-end automated process for the identification
and representation of subsystem variability in Simulink models.

3 Variability Identification

To determine an appropriate set of Simulink subsystem variability operators, we
used the set of models in the six diverse Simulink systems of the Mathworks
Simulink demonstration set as a starting point. These systems include models for
a range of applications in industrial, automotive, aerospace and other domains, and
are intended to demonstrate the range of ways to represent model features in these
applications using Simulink. They include a range of model versions and variants
for each application, and represent a rich source of examples of Simulink model
variation.

3.1 Simone: An Initial Approximation

To begin, we first required some indication of which subsystems in the models of
each system were similar enough to be considered variants of each other. For this
we used the Simone sub-model clone detector [1]. Simone is a hybrid model clone
detection technique that uses a normalized text representation of graphical models
to efficiently identify near-miss subsystem clones, that is, those that are similar up to
a given threshold of difference (in this experiment, up to 20% different). Simone is
based on the NICAD code clone detector [17], extended to handle graphical models.



Variability Identification and Representation for Automotive Simulink Models 7

Fig. 4 The SimNav subsystem clone class exploration interface in the Simulink IDE (from [8])

To identify and categorize subsystem variations, we applied Simone to the entire
set of models in each of the six Simulink demonstration systems. From each set
of models, Simone generated a database of near-miss subsystem clone pairs, repre-
senting pairs of model subsystems which are largely similar by may vary up to 20%
in components, connections, inputs, outputs or other attributes. Simone automati-
cally groups these clone pairs into “clone classes”, which are sets of subsystems
that are nearly similar to one another. It inherits from NICAD an efficient exemplar-
based algorithm to achieve this clustering, choosing a particular cloned subsystem
and then gathering all those other cloned subsystems that are similar to it within
the difference threshold. By beginning with the largest exemplars, it automatically
identifies the most inclusive set of variants of each cloned subsystem.

In practice even the raw clone classes resulting from this analysis can already be
used by Simulink model engineers to understand variations in their systems directly
from the examples in each class. In our previous work we have integrated the results
of Simone directly into the Simulink IDE using a Simulink plugin called SimNav [8,
16], that directly presents similar subsystems in the Simulink model editor (Figure
4).

Table 1 presents the initial clustering results provided by Simone for the set of
models in each of the six Simulink demonstration systems. Each subsystem in each
clone class has at least 80% common elements with the others in the class. A partic-
ular element of each clone class is chosen by our framework as an exemplar, from
which the others in the class are considered to be variants. We then classified the
nature of these variants to empirically derive the variability operators presented in
the next section.
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Fig. 5 Block Variability

4 Variability Operators

Using a manual inspection of the Simone results for the six systems using SimNav,
and investigating the variants in each Simone-reported clone class, we identified the
following types of variability in similar Simulink subsystems:

Block Variability Changes at the block level, such as added or removed blocks,
or one block replaced with another. An example of this type of variability is
shown in Figure 5 (circled in red).

Input/Output Variability Changes in the input/output ports for a specific block.
These can be changes to the number of ports, or the signatures of the ports. A
changed signal falls into this category as well. This type of variability is shown
in Figure 6 (circled in red).

Function Variability Changes to the contained function of a specific block or set
of blocks, such as constant values, data parameters, or the entire function. This
type of variability is shown in Figure 7 (note the different functions and constants
in the corresponding blocks of the two subsystems).

Layout Variability Changes to the layout information of the model elements,
such as block position. This type of variability is shown in Figure 8 (note the
mirroring of parts of the model).

Subsystem Name Variability Changes to the names of similar subsystems. This
type of variability is shown in Figure 9 (circled in red).

For each of the six systems, we determined the number of instances of each type
of variability, and ensured that all observed variations could be covered by the set
of variability operators. The results of this categorization can be found in Table
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Fig. 6 Input/Output Variability

System Name Block Input/Output Function Layout Subsystem Name
Automotive 10 6 1 3 8
Aerospace 5 17 2 4 13
Industrial 5 2 0 0 0
Features 22 22 17 2 4
General 5 3 1 1 1
Others 14 24 4 3 5

Table 2: Observed Instances of the Identified Variability Operators

2. The most common types of variability we observed were Block Variability and
Input/Output Variability, with the others occurring less frequently. There were no
instances of variability that did not fall into one of these five categories.

5 Tagging Subsystem Variability

To model the variability across the instances of a given subsystem pattern, we must
first determine the common components of the subsystem across all of the instances
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Fig. 7 Function Variability

in the clone class. Once we determine the commonalities between all instances, the
remaining components of the subsystem represent the variations we wish to model
using the variability operators.

5.1 Tagging Using #ifdef

Since Simone computes the clone classes based on a normalized textual difference
between the subsystems, one straightforward way to tag the variability between
models is in their textual representation. In this section we describe how to use
the unix diff command and source transformation to tag the variation in similar
subsystems.

We begin with a single difference file generated using the command diff -DFIRST
model1.mdl model2.mdl. This command merges the two files using C-style #ifdef
statements to characterize the differences. For example, Figure 10 shows two Out-
port blocks from two models taken from the Simulink example model set. Figure
11 shows the difference between the two outport blocks.
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Fig. 8 Layout Variability

In this example, the differences between the corresponding outport blocks are
three different attributes: Name, SID, and Position. The Name attribute identifies the
name of the block, while the Position attribute is part of the layout of the model. The
SID attribute is the unique identifier given to each element of a Simulink model. We
manually split the difference into three differences, and append a tag to each differ-
ence condition to indicate which of the variability operators of Section 4 applies.

The resulting difference file is shown in Figure 12. The first difference uses the
condition FIRST_Name to indicate that this is a subsystem name variability. The
third difference appends the variability tag _Layout to indicate a layout difference.
The second difference is a difference internal to the representation of the model, and
we use the variability tag _Other for this case.

In general, the variability can be categorized based solely on the entity attributes
involved in the differences. In the Simulink demonstration systems, the attributes
that reflect the names of entities are the Name and Text attributes. Some of the at-
tributes associated with Layout are Position, Location, ZoomFactor, Points, Font-
Name and FontSize. The value attributes are much more varied as they specify the
options for each of the function blocks in the models. Some examples of value at-
tributes in the demonstration models are Value, DataFormat, TimeRange, YMin and
YMax.
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Fig. 9 Subsystem Name Variability

File m_SimulinkDemoModels_aerospace_0.3__2_171_so.mdl:
Block {

BlockType Outport
Name "alpha, rad"
SID "71"
Position [675, 357, 705, 373]
IconDisplay "Port number"
InitialOutput "0"

}

File m_SimulinkDemoModels_aerospace_0.3__2_123_so.mdl:
Block {

BlockType Outport
Name "alpha (rad)"
SID "60"
Position [630, 235, 650, 255]
IconDisplay "Port number"
InitialOutput "0"

}

Fig. 10 Example Subsystem Difference

Variability in structure appears in the output of diff in two different ways.
First, they may appear as differences in attributes that express the connectivity be-
tween elements of the model. These are attributes such as DstBlock, SrcBlock, Dst-
Port,SrcPort, PortNumber and Port. The second way these differences can appear
is as additions and deletions of structural elements such as blocks and lines. Figure
13 shows the diffs resulting from the addition of a block in the one of the models,
m_SimulinkDemo Models_aerospace_0.3__2_123_so.mdl. The diff algorithm trig-
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Block {
BlockType Outport

#ifndef FIRST
Name "alpha (rad)"
SID "60"
Position [630, 235, 650, 255]

#else /* FIRST */
Name "alpha, rad"
SID "71"
Position [675, 357, 705, 373]

#endif /* FIRST */
IconDisplay "Port number"
InitialOutput "0"

}

Fig. 11 Example Subsystem Difference

Block {
BlockType Outport

#ifndef FIRST_Name
Name "alpha (rad)"

#else /* FIRST */
Name "alpha, rad"

#endif /* FIRST */
#ifndef FIRST_Other

SID "60"
#else /* FIRST */

SID "71"
#endif /* FIRST */
#ifndef FIRST_Layout

Position [630, 235, 650, 255]
#else /* FIRST */

Position [675, 357, 705, 373]
#endif /* FIRST */

IconDisplay "Port number"
InitialOutput "0"

}

Fig. 12 Example Subsystem Difference Split Into Tags

gers on the first difference, and since the element following an additional block is
often another block, the first line of that block (i.e. Block {) often matches and ap-
pears outside of the difference at the beginning and inside the difference at the end
(Figure 13). This is easily handled by moving the difference markers slightly ear-
lier as shown in Figure 14. We use _Structure when tagging both structure attribute
differences and added/deleted structural elements, also shown in Figure 14.

The differences can interact in interesting ways, but they can always be broken
down into either additional elements or changes to attributes. Thus complex differ-
ences such as the diffs shown in Figure 15 can be separated into multiple diffs, as
shown in Figure 16. This one difference encompasses all of a name change for an
annotation, layout changes for the annotation, and an additional annotation.

These transformations, which we explored manually, can be implemented in a
straightforward manner as a source transformation in TXL [7], following the ap-
proach taken by Malton et al. [14]. Malton et al. used a trace based approach to
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Block {
#ifndef FIRST

BlockType Gain
Name "Gain5"
SID "42"
Position [530, 222, 580, 268]
ShowName off
Gain "1/Uo"
}
Block {

#endif /* ! FIRST */

Fig. 13 Example Additional Block Difference

#ifndef FIRST_Structure
Block {
BlockType Gain
Name "Gain5"
SID "42"
Position [530, 222, 580, 268]
ShowName off
Gain "1/Uo"

}
#endif /* ! FIRST */
Block {

Fig. 14 Example Transformed Additional Block Difference

Annotation {
#ifndef FIRST

Name "F-14 Flight Control(an updated
version of this demo is available
by running ’sldemo_f14’)"

Position [328, 377]
#else /* FIRST */

Name "F-14 Longitudinal Flight Control"
Position [368, 17]
FontName "Arial"
FontSize 18
FontWeight "bold"

}
Annotation {
Name "This demonstration models a flight

control algorithm for the
longitudinal motion of a Grumman
Aer" "ospace F-14."

Position [367, 47]
#endif /* FIRST */
}

Fig. 15 Example Complex Difference
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Annotation {
#ifndef FIRST_Name

Name "F-14 Flight Control(an updated
version of this demo is available
by running ’sldemo_f14’)"

#else /* FIRST */
Name "F-14 Longitudinal Flight Control"

#endif
#ifndef FIRST_Layout

Position [328, 377]
#else /* FIRST */

Position [368, 17]
FontName "Arial"
FontSize 18
FontWeight "bold"

#endif
}

#ifdef FIRST_Layout
Annotation {
Name "This demonstration models a flight

control algorithm for the
longitudinal motion of a Grumman
Aer" "ospace F-14."

Position [367, 47]
}

#endif /* FIRST */

Fig. 16 Example Transformed Complex Difference

expand preprocessor statements in conventional programming languages, handling
overlaps between macros as expansions in the scope of the replacement.

Figure 17 shows the beginning of three way diff (using the command diff3) of
three elements of a clone class from the Matlab demonstration model set. As can
be seen from the figure, the differences are the names of the systems, the names of
several blocks, the location of one block and the internal identifier SID. All of the
remaining differences in these three files are to the internal identifiers of the blocks.
All of the remaining block types, values and other attributes are identical.

Figure 18 shows the final result, we have merged the contents of the diff with
the original files. The highlights show the line common to all three files. Each of
the ifdef lines have also been annotated with the type of the difference based on the
attribute within.

The remaining issue is that blocks in the model are occasionally in different
orders in different model files. Simone performs a canonical sort of elements on the
subsystems extracted from the models before making comparisons when identifying
clone pairs. We can apply this same sorting algorithm to the original model files
before performing the diff for tagging.
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====
1:2c

Name "m_SimulinkDemoModels_automotive_10_13_so"
2:2c

Name "m_SimulinkDemoModels_automotive_10_17_so"
3:2c

Name "m_SimulinkDemoModels_automotive_10_33_so"
====2
1:4c
3:4c

Name "validate_driver"
2:4c

Name "validate_passenger"
====2
1:8c
3:8c

Name "validate_driver"
2:8c

Name "validate_passenger"
====1
1:12c

Location [65, 299, 664, 654]
2:12c
3:12c

Location [69, 319, 668, 674]
====2
1:15c
3:15c

Name "validate_driver"
2:15c

Name "validate_passenger"
====
1:29c

SID "74"
2:29c

SID "110"
3:29c

SID "83"
====
...

Fig. 17 Example Three Way Diff

5.2 Tagging via Graph Algorithms

An alternate approach to discover and tag variability in Simulink model clones is
to treat a Simulink system as a directed graph and apply subgraph matching tech-
niques. In this approach, Simulink blocks represent graph nodes and the connections
between blocks represent directed graph edges. This graph-based abstraction makes
it immune to changes in layout, which is beneficial for finding a set of common
blocks between clones but does not help to discover layout-based variability.

The first step in this approach is to discover a set of common blocks between the
system clones. Our current algorithm supports an arbitrary number of clones, but
we describe it with 2 clones for simplicity. The goal is to map a subset of blocks
in clone 1 to a subset of blocks in clone 2. This mapping is accomplished by first
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Model {
#ifdef FIRST_Name

Name "m_SimulinkDemoModels_automotive_10_13_so"
#elif SECOND_Name

Name "m_SimulinkDemoModels_automotive_10_17_so"
#else

Name "m_SimulinkDemoModels_automotive_10_33_so"
#endif

System {
#ifdef FIRST_Name || THIRD_Name

Name "validate_driver"
#elif

Name "validate_passenger"
#endif

Location [428, 407, 944, 880]
Block {

BlockType SubSystem
#ifdef FIRST_Name || THIRD_Name

Name "validate_driver"
#elif

Name "validate_passenger"
#endif

Ports []
Position [115, 123, 300, 177]
System {

#ifdef THIRD_Layout
Location [65, 299, 664, 654]

#else
Location [69, 319, 668, 674]

#endif
...

Fig. 18 Example Transformed Three Way Diff

mapping a single block from clone 1 to clone 2 known as the root, then recursively
matching each roots’ neighbours as well as possible.

This algorithm incorporates two types of block matches: strong match (block
type and name must both match), and weak match (block type must match but name
can differ). The root blocks are chosen by selecting the strongly matched block pair
(one from each clone) with the most connections. Since only one connected sub-
graph is produced from this algorithm, more connections on the root block increases
the chances of a larger resulting subgraph. As block matching grows outward from
the root blocks, strong matches are prioritized over weak matches to help disam-
biguate potential match candidates. It is possible for strong matches to exist in the
clones that are not found by this algorithm, e.g. if they are separated from the root
block by an unmatchable region.

The end result is a connected subgraph G1 from clone 1 and a connected sub-
graph G2 from clone 2, where each node in G1 is mapped to a corresponding node
in G2. These subgraphs represent the set of common blocks between two clones, as
shown in Figure 19.

Once the common set of blocks is established, the remaining blocks in each clone
represent some form of variation. In a merged model file, such as that shown in Sec-
tion 6.7, the common blocks and their connections remain untagged, but the other
blocks can be tagged with their clone variant. This can be accomplished by using
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Fig. 19 Common blocks computed by the graph matching algorithm. The root block (red) is de-
termined, then neighbouring blocks are recursively included first by strong match (blue) then by
weak match (yellow).

the #ifdef approach from Section 5.1, or by simply adding a new Simulink parame-
ter such as “Variant clone1” to each appropriate variant block. When extending this
algorithm to find variation in three or more clones, a tag will specify each clone
where the block exists.

6 Representing Variability

Once the variability has been tagged in all instances in a clone class, our goal is to
produce a single subsystem model capable of serving for all the instance subsystems
of that clone class. To do this, we make use of the Simulink Variant Subsystem
Block, a built-in feature of Simulink designed to offer developers the choice between
any number of different options for a particular subsystem.

A Variant Subsystem Block can contain any number of different subsystems, as
long as they all have the same number of inports. The contained subsystems repre-
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sent alternatives for the variant subsystem, and only one of them may be active at
any given time. The active subsystem is determined by a logical expression, often
making use of a Simulink mode variable. While on the face of it the Variant Sub-
system Block seems limited in its expressiveness, being restricted to replacement
of entire subsystems, in our work we have leveraged this feature to represent not
the subsystem alternatives of the model itself, but rather our variability operators as
Variant Subsystem Blocks, allowing us to expose the individual points of variation
explicitly in the Simulink environment.

The following subsections outline how we use the Variant Subsystem Block to
represent each of our variability operators. We refer back to the example figures in
Section 4 as examples of each type of variability.

6.1 Block Variability

Block variability is perhaps the most intuitive operator to model using the Variant
Subsystem Block, especially in the instance of a block being replaced by another
similar block. To model this using a Variant Subsystem Block, we simply place
each of the alternative blocks in its own subsystem, and place all subsystems in a
Variant Subsystem Block. In instances where a block, or group of blocks, is added
(or removed, since there is no concept of directionality associated with the block
variability operators), the variability is modelled by having the added blocks con-
tained within a subsystem and placed in the Variant Subsystem Block. To represent
those instance(s) without those blocks, an empty subsystem, where the inports con-
nect directly to the out ports (or sometimes a terminator), is placed in the Variant
Subsystem Block.

To illustrate this operator, recall the example presented in Figure 5. This operator
is represented on the main level of the newly created variability1 model by inserting
a Variant Subsystem Block in its place, which then contains two subsystems, one
for each of the original options. This can can be seen in Figure 20, which shows the
top level model with the Variant Subsystem Block, as well as the two options inside
of it (outlined in red).

6.2 Input/Output Variability

Modeling Input/Output Variability is using Variant Subsystem Blocks is somewhat
less intuitive. In order to represent this type of variability, the top level subsystem
must contain the greatest number of inputs and outputs across all instances. Extra
inputs are then dealt with inside the options of the Variant Subsystem, typically
by sending them to a terminator in the variants where they are not used. Instances
where there are extra outputs are even more difficult to represent, as anything that
follows is affected, and will need to be represented inside another Variant Subsystem
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(a) Clone pair with block variation

(b) Corresponding variability model

Fig. 20 Representing Block Variability

Block. We can consider the outputs as inputs to the conceptual block “remainder of
the model”. The extra outputs are then sent to terminators in the instances that do
not contain them, and are used as they normally would be in the instances that do
contain them.

To illustrate representation of this operator, recall the example of Figure 6, and
more specifically the additional outputs from the Aircraft Dynamics Model subsys-
tem in the sldemo_f14 model, and thus the additional input to the block to the right,
which also is in an instance of block variability, as our example. At the top level,
there must be a Variant Subsystem Block (Variant Subsystem 1 - outlined in red)
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to model the different options for the Aircraft Dynamics Model, which will have
four outputs, as this is the maximum number from all of the options. To handle the
extra outputs, a second Variant Subsystem Block (Variant Subsystem 2 - outlined
in blue) is used. Variant Subsystem 2 also handles the changed subsystem block by
offering two options - note one option uses three inputs, and the other uses two. In
the instance where only two inputs are required, it is contained in a Container Sub-
system (outlined in green), and the third input is sent to a terminator. This can all
be seen Figure 21, which shows the top level model (top), as well as the contents of
each of the Subsystem Variant Blocks (Variant Subsystem 1 (bottom left) & Variant
Subsystem 2 (bottom center)), and the contents of the created Container Subsys-
tem (bottom right). Note that the variability2 model only accounts for the discussed
input/output variability.

6.3 Function Variability

While Function Variability is its own type of operator, it can be modelled in the
same manner as Block Variability. Consider that the two blocks with different func-
tions can be thought of as different blocks entirely. Just as with Block Variability,
we represent this with a Variant Subsystem Block, with an option for each of the
original blocks.

To illustrate this operator, recall the example from Figure 7. Each block is re-
placed with a Variant Subsystem Block, thus allowing a choice between the two
options. Each Variant Subsystem Block can use its own mode variable, thus allow-
ing combinations of options, or a common mode variable, thus only representing
the two original observed variants. Figure 22 shows the top level of the variability3
model, with the eight blocks replaced with Variant Subsystem Blocks.

6.4 Layout Variability

Because the layout of the model has no effect on its behaviour, we have chosen
to not represent changes in layout in the resulting variability model. Representing
the other types of variability in a class that also has layout variability, one layout
instance is arbitrarily chosen to represent all models in that class, regardless of their
initial layout.

6.5 Subsystem Name Variability

If the contents of a subsystem have not changed, and only the name has changed,
there is no behavioural change to the model, however we still wish to represent this
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(a) Clone pair with input/output variation

(b) Corresponding variability model

Fig. 21 Representing Input/Output Variability
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(a) Clone pair with function variation

(b) Corresponding variability model

Fig. 22 Representing Function Variability

variability as it does have meaning to the developers. This representation would be
handled in the exact same way that Block Variability would be; we can just consider
the two differently named blocks a different versions of a block, and use them as
options in the Variant Subsystem. This would also account for instances where the
name has changed, and the actual contents vary slightly, as is the case with our
example in Figure 9. Since the implementation for Block Variability has already
been demonstrated, there is no need to explicitly illustrate it this paper.

6.6 Combinations of Operators

Through observation of the studied systems, it is evident that each subsystem pattern
may require more than one type of variability, and as such, more than one variability
operator may need to be applied. Rather than defining combinations of operators as
their own unique operator, we have determined that applying any individual oper-
ators in succession is sufficient in representing the variability. For example, in an
instance where there exists both function variability and block variability, each is
handled individually following their respective process.
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6.7 Creating Variability Models Directly in Simulink

Currently the process of creating variability models has been automated directly
within SimNav for pairs of models. Given two models, the similar blocks and dif-
ferent blocks can be tagged (using a an extension of the algorithm described above),
and the different blocks are then merged using the Subsystem Variant Block.

In Section 5.2 we discuss an algorithm to find the common blocks among models
in a class of near-miss clones. We use this algorithm to automatically construct a
variability model representing the clone class. For this procedure, consider a clone
class with n clones (C1, C2, C3, . . . , Cn) where each clone contains a set of blocks
(Ci = {block1, block2, block3, . . .}).

1. Compute the blocks in common between all clones in the clone class using the
algorithm from Section 5.2:

Ccommon =
n⋂

i=1
Ci

2. Take the complement of the common blocks to find the blocks that vary between
clones, one variant set per clone: Vi = Ci − Ccommon

3. For each variant set Vi, place its blocks into a subsystem Si

4. Create a variant system containing subsystems S1, S2, . . . , Sn

5. The final variability model contains the common blocks Ccommon and the variant
subsystem from the previous step

The connections between blocks are kept wherever possible (i.e. within the com-
mon blocks and within each individual set of variant blocks). Connections that tra-
verse the boundary between a variant set and the common set are severed and re-
placed by input/output ports in the resulting subsystems. The blocks within each
subsystem are then connected to these ports such that the meaning of the original
clone is restored when its corresponding Variant Subsystem Block is activated. Fig-
ure 23 shows a clone pair both before and after the variability procedure has been
applied.

Due to the scalability limitations of graph algorithms, we also plan to continue
exploring other possibilities for automating the creation of variability models. We
plan on extending the work from Section 5.1 to allow us to directly manipulate the
textual representation of subsystem variants into a single Simuulink model capable
of expressing variability in a similar manner to that described in this section.

7 Related Work

Model variability is a richly researched area. There have been a number of tech-
niques developed for many different domains [9]. Typically, variability is looked at
from a management perspective [5], in that it is an essential property of projects that
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(a) Clone pair with variation

(b) Variability model

Fig. 23 (a) A clone pair with common blocks in yellow and different blocks in red, and (b) the
corresponding variability model.

needs to managed. There have also been steps taken to semi-automatically extract
variability in code-based projects [13] and model-based projects [20] in order to
manage it. The difference between our work and the latter is we use model clone
detection, via Simone, as the starting point for finding variability among, and group-
ing into classes/patterns, sets of models, whereas they compare systems recursively
by mapping similar components of the same type based on different criteria; like
name similarity, number of identical parameter values, connections, and more; in
order to get a weighted similarity sum between zero to one. Similar to one of our
two presented approaches for tagging variability, they identify variation points using
a graph-based approach. It is our contention that using classes, patterns, and cluster-
ing provides a better basis for representing variability and more useful information
then basic name and property similarity. In addition, graph-based approaches for
matching typically do not perform well on larger model sets due to subgraph iso-
morphism [6]. Our approach avoids this issue because our model clone detection
algorithm uses the textual representations of the models [1]. While one of our pro-
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posed tagging approaches uses graph algorithms, it is applied only to sets of single
models/graphs that have already been identified as similiar, so the subgraph isomor-
phism complexity will not be an issue on this small scale.

Albeit a relatively new sub-area, there is some existing work on variability in
Simulink models. Weiland and Manhart [27] argue the necessity for modelling vari-
ability in Simulink. They introduce a classification of possible concepts that can
be employed in order to represent Simulink variability: Model elements for model
adaptation, conditional model elements, and model elements for data variability. In
our paper, we realize the first of these concepts proposed by them in order to expli-
cate variability among Simulink clones. While Weiland and Manhart note that using
the variant subsystem block does not perform well in regards to their binding time,
we have found, from speaking to our industrial partners and engineers, that this so-
lution is most preferable for them. They want the variability to be demonstrated and
usable within their native Simulink environments. In addition, we have yet to wit-
ness any binding time limitations or concerns in using the variant subsystem block,
but this is something we will continue to monitor as we employ this solution in our
methods.

One Simulink-specific approach to encoding variability is accomplished by
Haber et al. [11], who note that functional-modelling approaches for representing
Simulink variability are often complex and do not scale well to larger systems. Thus,
they propose Delta Simulink, which is a first-class language that includes single
step operations like add, remove, modify, and replace. While it is an operational
approach, it is also graphical in that users can illustrate their deltas in a separate,
non-Simulink, viewer. Because their approach is operational, they note that “some
modification operations have to be split up into several deltas to be applied in a se-
quence.” Our representation avoids this in that it is declaritive. The sets of models
belonging to a related cluster indicate, all at once, exactly how the models differ.
This declaritive representation is understandably simplier, while still being precise,
and has been recieved well thus far by our industrial partners. Another concrete
deficiency is that Delta Simulink is another modelling language and the tools they
develop are external from Simulink. During our conversations with the industrial
engineers, it was made clear from the beginning that a key priority was to have an
approach that works within Simulink and can be as least disruptive as possible to
their processes. Seeing as Delta Simulink is a new language, albeit an extension to
Simulink, and exists outside the Simulink editor environment, their solution was not
ideal for our purposes.

Steiner et al. [21] manage Simulink variability by using and contrasting
Pure::variants, which has a Simulink connector that uses “point of change” infor-
mation; and Hephaestus, which has a graphical interface that allows developers to
select system elements to be used to generate specific product line instances. Their
approach uses conditional model elements in order to represent Simulink variabil-
ity, which, as we discussed previously in this paper, would not be ideal for Simulink
clone variants. In addition, the learning curve for using their technique is quite high
as engineers, would have to familiarize themselves with Pure::variants and Hep-
haestus. It uses the Hephaestus graphical interface, which is external to the Simulink
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editor native environment and is another reason this approach was not well suited
for us nor our partners.

Managing clones in product lines involves cases where systems using product
lines or feature models have exact duplicates or similar segments of a related prod-
uct line. Rubin et al. [18, 19] provide a framework for handling such systems that
includes abstract operators that allow engineers to reason and manage clones de-
tected in these systems. Thier work is focused on the product line, higher-level of
abstraction, level while our work is intended explicitly for Simulink models. In ad-
dition, our approach is declarative, while their’s is operational.

While variability involves looking at how systems differ at a somewhat larger
scale, model mutations focus on step-wise changes to a model in order to per-
form various types of analysis. Recently, we proposed and validated a taxonomy
of Simulink model mutations [25] for the purposes of injecting various types of
Simulink model clones [24]. There is also work on Simulink model mutations that
describe mutation instances that explicitly try to mutate a model’s run-time prop-
erties [4, 12, 28]. While this mutation analysis work was helpful in guiding how
we viewed Simulink variability, we essentially were focused on a higher and more-
feature-oriented level.

Basit and Dajsuren [3] use a constraint language in order to model mutations
among Simulink clones with the purpose of allowing clone management that is en-
tirely separate from the models. Thier work is concerned with a different, but related,
task. Their work looks at the model clones as simply clones, while we focus on the
(sub)system level in order to to identify candidates for (sub)system variants. Our
approach is more geared towards tool support and working directly in the Simulink
environment to assist engineers. In addition, they do not have a tool at this point and
engineers would have to their constraint language.

Calculating and representing variability in models is analogous to calculation
and representation phases of Model Comparison [23]. The first phase, calculation,
involves discovering what is the same and what is different, while the second phase
of model comparison, representation, addresses the form that the differences and
similarities among models take. There are many different ways of achieving model
comparison calculation [22], but nothing was specifically suited to identifying vari-
ability among a set of Simulink models as outlined in our framework. As such, we
presented both a Unix-diff and graph-based approach in this paper. Model compari-
son representation can be realized in an operational fashion, such as through the use
of edit scripts; or in a more declarative fashion like those that represent the differ-
ences in a model-based or abstract-syntax-like form. The representation we present
in this paper falls more in the declarative category as we are representing the vari-
ability in model form by having multiple model-implementation options linked to a
specific variation point.

For our graph-based variation analysis, where we explicate the similarities and
differences within a set of already identified “similar" models, we based our ap-
proach on what Deissenboeck et al. [10] did in their ConQAT graph-based model-
clone algorithm. The difference here is that we are using a graph-based approach on
only the micro level in order to compare and constrast a small set of models. The
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algorithm ConQAT uses can not detect near-miss clones, while our model-clone de-
tection approach can [1]. Using an approach that does not identify near-miss clones
from the graph-based variation analysis perspective is sufficient, as we need only to
identify variation points.

8 Conclusion

Based on the six example systems of the Simulink demonstration set, we have em-
pirically derived five variability operators for Simulink Models. These five operators
encompass all of the different types of variability observed from the initial analy-
sis of similar subsystem variance provided by Simone, a hybrid sub-model clone
detector. We have presented two methods for tagging variability across a set of sim-
ilar Simulink models, one based on text differencing and one on graph matching.
Both of these processes have been automated for pairs of similar subsystems, and
we are currently extending them to handle N-way differencing. We have shown how
each of the five variability operators can be represented directly in the Simulink en-
vironment through a novel use of the Variant Subsystem Block by extending our
SimNav tool to support this feature. While the variability representation using the
graph matching approach showed good results in representing variability for small
subsystems, we are still experimenting our tool for larger subsystems and expect to
face some scalability issues related to our graph matching algorithm. For that rea-
son we continue to explore the alternative text-based implementation carrying on
our tagging approach using #ifdef . This alternative approach has the advantages
that it automatically tags variations based with the types of variability operators and
is likely to scale better than the graph based approach.

9 Acknowledgments

This work is supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) as part of the NECSIS Automotive Partnership with
General Motors, IBM Canada and Malina Software Corp., and by an Ontario Re-
search Fund Research Excellence grant.

References

[1] Alalfi MH, Cordy JR, Dean TR, Stephan M, Stevenson A (2012) Models are
code too: Near-miss clone detection for Simulink models. In: ICSM’12 - 28th
Int. Conf. on Software Maintenance, pp 295–304



Variability Identification and Representation for Automotive Simulink Models 29

[2] Alalfi MH, Rapos EJ, Stevenson A, Stephan M, Dean TR, Cordy JR (2014)
Semi-automatic identification and representation of subsystem variability in
Simulink models. In: ICSME’14 - 30th Int. Conf. on Software Maintenance
and Evolution, pp 486–490

[3] Basit HA, Dajsuren Y (2014) Handling clone mutations in Simulink models
with VCL. In: IWSC’14 - 8th Int. Works. on Software Clones, pp 1–8

[4] Binh NT, et al (2012) Mutation operators for Simulink models. In: KSE’12 -
4th Int. Conf. on Knowledge and Systems Engineering, pp 54–59

[5] Capilla R, Bosch J, Kang KC (2013) Systems and Software Variability Man-
agement. Springer

[6] Cook SA (1971) The complexity of theorem-proving procedures. In: 3rd ACM
Symposium on the Theory of Computing, ACM, pp 151–158

[7] Cordy JR (2006) The TXL source transformation language. Science of Com-
puter Programming 61(3):190–210

[8] Cordy JR (2013) Submodel pattern extraction for Simulink models. In:
SPLC’13 - 17th Int. Conf. on Software Product Lines, pp 7–10

[9] Czarnecki K, Grunbacher P, Rabiser R, Schmid K, Wąsowski A (2012)
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