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Abstract—Software modeling is a powerful tool in the design
and implementation of high-quality software systems. Models
can be used from high-level design to formal code generation,
with various applications in between. Often, software models
are initially created informally, by sketching on a whiteboard
or paper during the early design phase of the system, and
eventually converted into formal models using advanced modeling
tools. The formalization of sketches into actual model components
can be time-consuming, error-prone, and laborious. To address
these shortcomings, we present SkeMo, an environment for real-
time model component generation from sketch-based inputs.
We curated a sketch dataset of 3000 images of various class
diagram components and implemented a powerful Convolution
Neural Network to classify input sketches as model components.
We integrated our sketch classifier into an existing web-based
model editor and added a touch interface to support sketch-
based modeling. We evaluated the SkeMo environment in two
ways: through ten-fold cross-validation of the image classifier
and collection of metrics and feedback from a 20-participant user
study. Based on our results, sketch-based modeling demonstrates
significant promise as an intuitive interface that is both easy to
use and allows for faster model creation among most users.

Index Terms—model-driven software engineering, machine
learning, deep neural network, convolution neural network,
image recognition, sketch recognition, class diagrams, classifiers,
interface design, touch interface, collaborative modeling, assistive
modeling, user studies

I. INTRODUCTION

Model-driven software engineering (MDSE) allows engi-
neers to create and maintain complex software systems through
the development of abstract software models and the genera-
tion of code from these models. To best leverage the benefits
of software modeling, various other means of interacting with
models could be used to enable a wider range of practitioners
to become proficient in modeling. With more and more devices
offering touch interfaces and an increased familiarity with their
use, it seems natural that we could leverage these expanded
interfaces to informally input model elements to be used
in formal model creation. Our work aims to leverage touch
interfaces as a means of interacting with software modeling
to create an environment that would enable users to create
high-quality software systems using an MDSE approach.

A. Motivation

Sketching and diagramming are commonly used in design,
architecture, and engineering [1]. Software architects and

developers create informal sketches to understand, design,
and share their ideas within the team [2]. Such sketches are
created using different media, from analog media such as paper
or a whiteboard to digital media such as smartphones and
computers. Sketching is preferred in the early stage of software
development [3] as it fosters creativity [4] and collaboration
among various stakeholders [3]. Sketching provides a means
of effective communication and collaboration by expressing
ideas simply and abstractly. Moreover, the availability of
digital devices such as mobile phones, tablets, touch-screen
displays, and input devices with sufficient computing power
has made free-form sketching more accessible and collab-
orative [5]. Additionally, web-connected applications have
further facilitated collaboration by allowing users to refine
and formalize their digital sketches collaboratively [5], [6].
However, such informally drawn sketches often tend to deviate
from standard notation, such as Unified Modeling Language
[2], [7]. Interpreting sketches with informal notation can be
difficult later in the development process [6]. In these cases,
the models often need to be converted to formal models as the
development process begins. However, manually converting
sketched models into formal models can be a tedious and time-
consuming process. This can be avoided by developing tools
that support sketching and transforming sketches into required
standard models.

Although several attempts have been made to convert infor-
mal sketches into formal models, there are limited web-based
modeling environments available [8]–[11]. Existing sketch-
based modeling applications are mostly supported on desktop
computers [6], [12], [13], e-whiteboards [13], [14], or mobile
devices [5], [6], which require installation and setup. However,
with the widespread availability of digital devices and the
internet, we propose a web-based framework for real-time
sketch recognition and formal model creation. The proposed
framework leverages the simple and abstract nature of sketches
and uses a Convolution Neural Network (CNN) for creating
formal models in real-time, which can be easily accessible on
any device with internet connectivity, making it a convenient
and efficient solution for creating formal models.

B. Research Questions & Contributions

The goal of this study is to demonstrate the effectiveness of
real-time sketch conversion as a means for creating software



models. To demonstrate the effectiveness, we pose and provide
answers to the following research questions:

RQ1: How effective is our proposed approach for converting
sketches to software models in real-time using an image
classifier?

RQ2: Can sketch-based software modeling be faster than tra-
ditional drag-and-drop methods for creating software
models?

RQ3: Can our approach to real-time sketch conversion con-
tribute to collaboration when creating software models?

Through answering these research questions, our work
makes the following significant contributions:

1) creation of a structural modeling sketch dataset
2) development of a structural modeling sketch classifier
3) SkeMo: an implementation of a web-based modeling

framework for sketch-based modeling using touch input
4) a formalized evaluation of the SkeMo environment for

both effective model creation and collaboration

II. BACKGROUND AND RELATED WORK

A. Software Modeling

Numerous modeling tools have been developed to facilitate
model creation, transformation, and code generation in soft-
ware development. These tools come in various forms, from
open-source to commercial, complete framework to individual,
and desktop-based to web-based modeling tools. It is worth
noting that modeling tools are distinct from drawing tools de-
spite the common misconception that they are interchangeable.
A modeling tool may not necessarily function as a drawing
tool, and vice versa [15]. A drawing tool can only be a
modeling tool if it understands the semantics of the drawn
elements [15].

A web-based modeling tool is a software development
paradigm that utilizes web technologies to create software
models. Unlike desktop-based tools, web-based modeling tools
allow users to access them from any device with an internet
connection without needing to download or install any ap-
plications. Web-based UML modeling tools, also known as
online UML tools, facilitate the drawing and sharing of models
online, thereby supporting collaborative work.

DiGennaro et al. [8] developed a web-based modeling envi-
ronment called SuMo that supports the creation of valid struc-
tural models, model transformations, and the generation of
transparent code. Umple [9], [10] is a web-based framework
that supports Model-Driven Development with forward and
reverse engineering capabilities. The web-based environment,
known as UmpleOnline1, provides users with an interface
to draw a UML class diagram and automatically generates
the corresponding code in languages such as Java and C++.
Additionally, it also allows users to write their code and
convert it into Umple models. However, it does not provide
model-to-model transformation and the creation of instance
models based on users’ meta-models [8]. GenMyModel2 is

1https://cruise.umple.org/umpleonline/
2https://www.genmymodel.com/

another web-based modeling tool that provides users with
a UML editor to create UML diagrams, such as class and
sequence diagrams. Additionally, it provides support to export
models in XML Metadata Interchange (XMI), which is a
standard format for exchanging models, and also has code
generation capabilities from models. There are other online
UML tools such as Draw.io3, an online version of Visual
Paradigm4, and UMLetino5.

Unlike drawing tools, our work focuses on creating an
online modeling environment with support for sketch-based
modeling. Furthermore, the existing web-based modeling tools
do not support sketch-based modeling, as they only provide
an editor to drag or select class diagram components. In
contrast, our work aims to combine web-based and sketch-
based modeling for real-time conversion of sketches into for-
mal models. With the combined web-based and sketch-based
modeling capabilities, SkeMo has the potential to open up new
possibilities for software development and collaboration.

B. Image and Sketch Recognition

Several studies have proposed sketch recognition models
based on convolutional neural networks (CNNs) for dif-
ferent purposes. Kabakus [16] developed a simple CNN-
based sketch recognition model that achieved an accuracy of
89.53% on the Quick Draw dataset. Yu et al. [17] proposed
Sketch-a-Net, a deep neural network-based sketch recog-
nition model that outperformed hand-crafted feature-based
techniques. Their model achieved an accuracy of 77.95% on
the TU-Berlin dataset [18]. Google also developed a web-
based drawing game called Quick Draw!6, which uses
neural networks to recognize sketches. Li et al. [19] pro-
posed Sketch-R2CNN, an architecture for vector sketch
recognition that used RNN for temporal ordering and group-
ing information analysis and CNN for sketch recognition.
Brieler et al. [20] proposed a model-based recognition engine
for recognizing sketched diagrams using transformers. Their
approach specifically focused on solving issues related to
the clustering and segmentation of image strokes. Similarly,
Schäfer et al. [21] proposed Arrow R-CNN for detecting
symbols and structures in handwritten diagrams or images
containing flowcharts, graphs, or diagrams with directional
elements.

Although different CNN architectures are designed for
various image processing tasks, we opted to develop our own
CNN architecture to address our specific use case instead of
adapting an existing one. In comparison, a specific example
like Arrow-RCNN is based on a pre-existing CNN and is
considerably larger than our model. Our approach focuses
solely on the classification of five sketches of class diagram
components, and the benefits from its smaller and more
dedicated nature make it well suited for our application.

3https://www.draw.io/
4https://online.visual-paradigm.com/
5http://www.umletino.com/
6https://quickdraw.withgoogle.com/

https://cruise.umple.org/umpleonline/
https://www.genmymodel.com/
https://www.draw.io/ 
https://online.visual-paradigm.com/
http://www.umletino.com/
https://quickdraw.withgoogle.com/


C. Sketch-Based Modeling

Mangano et al. [22] developed a user-friendly interac-
tive whiteboard system called Calico. It is a sketching
tool focused on supporting the beautification of informally
drawn sketches [23] rather than specific UML diagrams.
Similarly, Wüest et al. [5] created an android application called
FlexiSketch focusing on creating free-form sketches,
defining their metamodel, and later reusing them. Chen et
al. developed a Visual Basic application called SUMLOW [14]
that allows users to sketch UML design elements, formalize
the sketches, and export them to existing UML CASE tools.
Similarly, Tahuti [12] is another tool that allows users
to draw UML class diagrams with a computer mouse with
support for multi-stroke sketch recognition. However, SUMLOW
and Tahuti use two different views, one for sketching
and another for viewing the formal diagram, requiring users
to often switch between the two for drawing and viewing.
Unlike these, SkeMo focuses on automatically converting user-
drawn sketches into formal model components on the same
view. OctoUML [13], [23] is closely related to our work
as it supports creating both formal and informal diagrams on
the same view. While OctoUML has expanded functionality,
the conversion of sketches to model components is carried
out through manual intervention instead of being executed
instantenously. OctoUML requires users to select sketches for
conversion; SkeMo automatically converts them. OctoUML
does not recognize sketches of different types of relations since
PaletoSketch [24], which OctoUML uses for sketch recogni-
tion [23], only recognizes basic shapes. SkeMo automatically
adds different types of relations since it is built on its own
sketch classifier for improved classification. With onscreen
keyboard support, OctoUML supports adding/updating the
properties of components, such as updating the name of
attributes and class names. SkeMo also allows for the same
updates through onscreen/hardware inputs and UI elements.
OctoUML is an interactive whiteboard-based application,
whereas SkeMo is a web-based app that enables access via any
connected device. Additionally, OctoUML does not support
code generation from models [13]. Since IML, the existing
web-based environment SkeMo uses supports these model-
to-code transformations, SkeMo shares this capability. Unlike
the evaluation of OctoUML, SkeMo presents the observational
results from the user study, in addition to technical evaluation,
where we demonstrate that sketch-based modeling can be
slightly faster than using traditional input methods.

III. TARGET APPLICATION

We chose to incorporate SkeMo into an existing web-
based modeling tool, the Instructional Modeling Language
(IML) [8], [25], to support sketch-based modeling on the web.
The IML model editor supports creating structural models
based on UML class diagrams. The selected environment is
capable of modeling classes, attributes, and several types of
relations. The web-based model editor primarily includes the
following elements: i) Modeling Pane: the central canvas
where users can add, edit, and delete model components such

as classes, attributes, and relations, ii) Palette: a collection
of icons representing model elements, which users can select
and drag onto the modeling pane to add to the model, iii)
Properties Table: a table that shows the properties of a
selected model component for inspection and editing.

All these components together provide a seamless user
interface for creating and editing UML-like class diagrams
within the web-based modeling tool. Furthermore, the web-
based modeling editor also supports model transformation and
code generation from the created software models.

A. Action Selection

Our goal is to provide users with a platform that allows for
the easy and enjoyable creation of structural models through
real-time sketch conversion to model elements. In order to
effectively implement sketch-based modeling in our web-based
model editor, we need to define the actions that users can
perform. It was important that we included the ability to add
all possible elements in the editor so that no functionality was
lost by the sketch-based editor. Based on this, we determined
we needed to account for the following actions:

• Adding a class: Enables users to draw an informal sketch
to add a class to the model editor.

• Adding attributes to a class: Allows users to sketch on
existing classes in the editor to add attributes to them.

• Adding a relationship between classes: This action
enables users to draw the required relationship between
two existing classes on the model editor.

• Select and manipulate model components: This enables
users to select and interact with model components by
switching from drawing to selection mode with a specific
touch gesture. Users can then move elements, update
names and values, change attribute data types, and take
advantage of other base IML functionality.

• Deletion: This action allows users to delete the selected
model components in the editor, for example, selecting
and deleting an attribute from a class.

• Undo: An undo feature allows users to undo any previous
actions, allowing users to rectify errors or backtrack
changes made during the modeling process.

In addition to the above list of actions, SkeMo allows for
model updates via non-sketch interactions. The current version
of the SkeMo does not support updating model properties via
sketching. However, users can use on-screen or traditional
keyboards to change names, cardinality, visibility, etc. Col-
lectively, these actions encompass a comprehensive range of
elements that can be incorporated into the SkeMo model editor
for sketch-based modeling.

IV. SKEMO: SKETCH-BASED SOFTWARE MODELING

We created SkeMo, our approach to helping software de-
velopers and other users create software models through real-
time conversion of sketches. The primary purpose is to support
the instant conversion of informal sketches to formal model
components, which later can be utilized for other tasks such as
code generation, documentation, etc. Here, the term “informal”



indicates that the sketch lacks inherent meaning and serves as
a mere representation of an element, with formal semantics
being added upon its conversion into a model element. To
achieve our goal, we extended an existing web-based modeling
tool to support sketch-based modeling, allowing users to create
a UML-like class diagram using sketches. This implementation
of a sketch-based environment to the model editor includes the
addition of other functionalities such as sketch recognition,
analysis, and conversion to model elements. Fig. 1 provides
an overview of the SkeMo architecture and our approach to
implementing sketch-based modeling on the web platform.
We provide the implementation details of our approach in the
following sections.

Application
Programming Interface

(API)

Classified Result

Image Extraction 
(256 x 256)

Unlabeled
Image Data

Modeling InterfaceSketch Interface

Labeled Image
Dataset

Preprocess Image

Client Server

Model

Model
Training

Sketch-Model
Transformation

Fig. 1: SkeMo Application Architecture

A. Sketch Collection and Model Interface

Our approach to supporting sketch-based modeling includes
two interfaces - sketching and modeling. The sketching inter-
face is used to collect user-drawn sketches, whereas the mod-
eling interface is used to add and interact with corresponding
model elements.

(a) Composition

(b) Reference

(c) Inheritance

(d) Class

(e) Attribute

Fig. 2: Sketchable Components of a Class diagram

In addition to the final sketch interface for SkeMo, we
needed to first decide on a method for sketch recognition
to generate the training data for our model. There are two
main approaches to sketch recognition: during the drawing
process or after completing the drawing. Sketch recognition
during drawing involves analyzing and recognizing each stroke
information as the user draws an object. In contrast, post-
drawing recognition involves analyzing the entire sketch as

an image once the user has finished drawing, using various
image recognition techniques. In this work, we utilize the
latter method for sketch recognition. After determining the
sketch recognition methodology, we created a separate web-
based sketch interface to collect sketch data, implemented
using HTML, CSS, JavaScript, and Bootstrap for the front
end and PHP as a server-side language to collect sketches
drawn by the users on the back end. The interface provides
users with a list of symbols to sketch, along with the necessary
instructions. It consists of two buttons: a clear button to remove
any incorrectly drawn sketches and a save button to allow
users to save the sketch they have drawn. The collected data
was then automatically labeled and used to train our image
classifier.

After completing the sketch collection, we then adapted
the stand-alone sketch interface to overlap with the modeling
interface of the existing web-based modeling tool. We added
a toggle UI element to implement sketch-based modeling in
the tool. When a user turns on the switch element, the sketch
interface is overlayed over the modeling interface to capture
and classify user-drawn sketches and then automatically add
the classified model component to the modeling interface.

When the sketch modeling feature is enabled, our applica-
tion indicates that the user is in drawing mode, allowing them
to draw freely on the sketch interface. However, when using
this mode, users will not be able to directly interact with model
elements (e.g., to move them). They must be in selection mode
to select and move model elements added to the modeling
interface. To switch between drawing and selection modes,
users can easily tap the interface with two fingers or press and
lift the stylus pen button (if using one). For example, when a
user draws a rectangle on the sketch interface, it gets converted
into a class element on the model interface. Suppose that the
user wants to move the added class; in this case, tapping the
interface with two fingers will transfer the pointer events from
the sketch to the model interface, and the user will be able to
select and move components around as needed. This reduces
the need to turn the toggle UI element on/off to draw and
move model elements on two different interfaces.

Each of these elements enables a seamless interaction with
the existing modeling interface, while supplementing it with
the benefits provided by the sketch-based modeling environ-
ment.

B. Sketch Classification

To convert sketches to model elements in real time, we
required a trained CNN capable of processing images and
indicating their intended representation in the model. To
achieve this within SkeMo, we built a classifier capable of rec-
ognizing informal sketches of model components. We began
by collecting sufficient sketch data to map to the formal model
components. In order to map informal sketches to formal class
diagram components, we opted to choose a similar set of icons
from the existing web-based model editor. Fig. 2 illustrates
the list of symbols that we use for our sketch data collection,
which correspond directly to the possible model elements. For



example, we consider the informal sketching of a rectangle as
adding a class and a plus sign within a class as adding an
attribute to that class in the model editor.

We provide detailed descriptions of our data collection,
data processing, and classifier development methodology in
the following subsections.

1) Data Collection: We collected training data from re-
searchers within our research group. Six users participated in
the data collection process, where each participant was asked
to draw using the canvas area according to the instructions
provided on the sketch interface. Users were asked to draw
each of the five components from Fig. 2, one at a time and,
save the sketches after completing them. The sketch collection
process was carried out in two ways: initially, users were asked
to draw using their fingers, and later, they were requested to
repeat the same process using a stylus pen. In both cases, we
collected 50 images for each of the five components, resulting
in a total of 500 sketches from each user, amounting to 3000
sketches in total from all users. Data from users was collected
using a Microsoft Surface Pro 2, a device supporting touch
inputs via both a finger and a pen.

The collection interface automatically labeled the sketch
drawn by the user according to the provided instructions. For
example, if a user is asked to draw a reference relation, the
image is labeled as a reference once the user finishes drawing
and saves it to the server. After collecting user sketches, we
manually inspected the collected images to confirm all images
were correctly labeled. For example, if a user accidentally
draws a reference relation instead of a composition, the wrong
image would be labeled here, affecting the model training. In
any case of any labeling errors observed during our manual
inspection, we asked the user to redraw mislabeled images
again.

The 3000 images were used to train and evaluate our
CNN for classifying user sketches. The evaluation process is
explored further in Section V-A.

2) Training Our Classifier: Data processing is crucial in
machine learning, as it involves preparing high-quality data
to train machine learning algorithms. One important aspect
of data processing, especially in image classification tasks,
is ensuring that the images used for training are of suitable
size and quality. Image resolution can significantly impact
the performance of a CNN model. Therefore, using images
of appropriate sizes and quality is important for better model
performance. Larger image sizes tend to contain more detailed
information, which can potentially improve the accuracy of
the model’s predictions. However, using larger images also
requires more computational resources and longer processing
times during training and inference. On the contrary, reducing
the image resolution too much can result in the loss of
important features that are essential for accurate classification.
This can lead to a decrease in the model’s performance, as
the reduced resolution may not capture the necessary details
needed for accurate predictions. Therefore, to create a balance
between resolution and computation resources, images are
commonly scaled to an appropriate size for optimal perfor-

mance, typically ranging from 64 x 64 to 256 x 256 resolution
for training CNNs [26].

For SkeMo, we collected images of size 256 x 256 as
our training data for a CNN model designed for sketch
classification. To extract the image, we first capture the sketch
from the original canvas and transfer the image data to another
canvas of 256 x 256 size. Our approach records touch points
associated with each user’s stroke while sketching on the
interface. These touch points provide information about the
location of the user’s input on the canvas. From the recorded
touch points, we extracted the x and y coordinates from the
top-left corner and the bottom-right corner of the canvas to
understand the spatial extent of the drawing. Once the user
finishes drawing, we obtain additional image information, such
as width and height. We compute image width and height from
the x and y coordinate information extracted earlier, allowing
us to understand the overall size of the user-drawn sketch. The
overall process can be considered image cropping from the
original canvas and copying it to another canvas of the required
size to generate all images of the same size, preserving the
aspect ratio.

We used the data collected from the sketch interface to train
a convolutional neural network (CNN) model. We used single
channel image data for our training. We used the Keras Se-
quential Model API to create the layers of the neural network.
The final CNN architecture consists of seven convolutional
layers followed by two fully connected layers. Additionally,
max-pooling layers were incorporated after each convolutional
layer, and ReLu (Rectified Linear Unit) was used as the
activation function. We also added a data augmentation layer,
and the final CNN layer employed the LogSoftmax activation
function, and we used Adam as an optimization algorithm. It
is important to note that the classifier is trained to recognize
individual model elements rather than more complex sketches
by design. Since the underlying editor has extensive error
checking and guidance, element-by-element insertion allows
SkeMo to leverage these benefits. Therefore, the CNN model
was trained to classify sketches into one of five classes: class,
attribute, reference, inheritance, and composition. The trained
model was then ready to be deployed alongside the modeling
interface.

C. Model Application

When the user is in drawing mode, our approach auto-
matically extracts the sketch drawn on the interface when
a user lifts the stylus pen or finger and does not touch
down again on the interface within 750ms. This specific
time interval accommodates multi-stroke images, providing
users ample time to lift their pens and finalize their drawings
before extraction, while also avoiding excessive delays that
may impact the user experience. An example of the SkeMo
interface where a user has sketched a relation, but it has not yet
been replaced is shown in Fig. 3. Following the 750ms delay,
we extract the image of size 256 x 256, which is consistent
with the image size used in the training data of the model
used for classification. Once the image is extracted from the



Fig. 3: SkeMo Model Editor

sketch interface, the client calls the API on the Node.js server
with the extracted image data as input for classification. The
server receives the request from the client and extracts the
bitmap information from the image data using the PNG.js7

library, which is a JavaScript library specifically designed to
encode and decode PNG images in Node.js applications. With
the bitmap information, the server prepares the image for
prediction by converting it into single-channel image data. The
server then uses the trained model to classify the image based
on its single-channel representation.

Once the classification is completed, the server returns
the classified result to the client. The client then adds the
corresponding element to the model directly, resulting in real-
time sketch conversion into an interactive model element. The
model element is inserted into the modeling interface at the
same position where the user initially drew the sketch. Each of
the modeling functionalities SkeMo is capable of is explored
in the following paragraphs.

Addition of a class: If a user draws a rectangle and it is
correctly classified, a class with the next sequential default
name is added to the modeling interface. The coordinates
of the rectangle’s top-left corner on the drawing canvas are
used as the top-left corner of the class inserted to maintain
consistency between the sketch and model.

Addition of attribute: When a user sketches a plus sign
over any class present in the model, if the sketch is correctly
classified, it will add an attribute to the underlying class
with the next sequential default name. If the user tries to
draw plus outside of any class in the interface, it will inform
the user that attributes can only be added to the classes.
Currently, the “+” adds an attribute and does not refer to
public visibility. While defaulting to the public, once an
attribute is added, its visibility can be changed to private or
protected using the dropdown menu. The potential future plan
includes incorporating informal sketches of “-” and “#” for
adding/changing attributes to private and protected visibility,
respectively.

Addition of relationships: The addition of relationships

7https://github.com/pngjs/pngjs

occurs when a user draws any of the three types of relations
(reference, inheritance, and composition) on the sketch inter-
face, attempting to establish a relationship between two classes
present on the modeling interface. Once our sketch classifier
identifies the type of relation, the corresponding relation is
added between the two classes in the model. Users can also
add self-reference relations by drawing informal sketches of
reference overtop the existing class on the modeling interface.
It is important to note that the underlying model editor does
not support the addition of a single bi-directional relation;
however, users can add two distinct relations with unique
names and properties in the same way as adding any other
relation using SkeMo as means for adding bi-directional
relations between classes.

One of the main challenges in adding a relationship between
classes is identifying the source and destination classes from
the sketch. To address this challenge, SkeMo uses the density
of image pixels rather than considering the drawing order of
the sketch, as users can draw relations in various directions.
First, we check the orientation of the sketch and then divide
the image into two equal halves along its length, considering
the half with more pixels as the destination and the other
half as the source for reference and inheritance relations.
However, this case is reversed for the composition relation
where the diamond shape is at the source. Using coordinate
information of the source and destination ends from the sketch,
the appropriate classes are sought in the model by finding the
class nearest each end.

V. EVALUATION

In this section, we present the evaluation of SkeMo and
provide answers to our three research questions.

Since the sketch classifier is a crucial component of our
approach, the first step in evaluating our approach is to assess
the performance of our trained model. We used standard met-
rics commonly used in machine learning, including Precision,
Recall, and F1-score, to evaluate the accuracy and effective-
ness of our model in predicting sketches drawn by users.
Precision measures how many images are correctly predicted
out of the total predicted images (ratio of true positives to
the sum of true positives and false positives). Specifically,
precision determines how precisely the model can predict
sketches correctly, while recall measures the ability of the
model to identify all relevant sketches (ratio of true positives
to the sum of true positives and false negatives). The F1-score
represents the harmonic mean of the model’s precision and
recall. We further discuss the details of evaluating our image
classifier in Section V-A, where we provide detailed insights
into the performance of our trained model.

In addition to evaluating the sketch classifier, we also
conducted a user study to collect qualitative and quantitative
data from users about their experiences using SkeMo to create
software models. We carried out this portion of the study
to answer RQ2 and RQ3, which focus on the speed and
collaboration aspects of our approach. We present the results
of our study in Section V-D, providing valuable information on

https://github.com/pngjs/pngjs
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user experiences and perceptions while using sketch modeling
in the context of our web-based approach.

Data from our evaluation, including our training data, back-
end source code, and data from our user study is available
via the Open Science Foundation [27].

A. Evaluation of Sketch Classification

To evaluate the performance of our CNN model, we used a
stratified 10 fold cross-validation approach. In this approach,
we divide our entire dataset into 10 equal sized folds ensuring
that each fold has same class distributions (having same
proportion of samples from each class). We trained our model
for 10 iterations, where in each iteration, 9 of 10 folds were
used for training the model, and the remaining 1 fold was
used for validation. The process enables training and validation
of our model with different sets of data to ensure that our
evaluation is not biased by the presence of any specific portion
that may impact the evaluation results.

B. Classifier Results

During each iteration, we trained our model with a training
set and evaluated the performance of the model by using
validation set. We calculated standard evaluation metrics that
included precision, recall, and f1 score for each iteration. After
completing all iterations, we calculated the average results
of all three metrics. We obtained an average precision of
97.64%, average recall of 97.57%, and average F1-score of
97.55%. Fig. 4 shows the sum of the confusion matrices for
all iterations. We observe from the figure that our model
has minor issues accurately classifying reference and inher-
itance relations, as a significant number of reference has been
classified as inheritance and vice-versa. Additionally, some
inheritance relations were also misclassified as composition
relations. Since there is a close similarity in sketches of each
of three relations, this could have contributed to the confusion.
However, the model is able to predict rectangle and attribute
more accurately than the three relations. In general, the overall
performance is quite strong.

C. User Evaluation

Although our model achieved an average classification accu-
racy of 97.57%, it was crucial to assess its actual performance
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Fig. 5: The baseline and target models for the user study

when participants used SkeMo to construct real models. This
evaluation was necessary to determine the effectiveness of
our approach (RQ1), as well as to gather insights related to
the speed (RQ2) and collaboration aspects of software model
creation (RQ3). We conducted a user study, which has been
reviewed and approved by the Miami Research Ethics and
Integrity Office under protocol ID 04242e, to evaluate our
approach and collect valuable data from user experiences. We
used a survey to collect data about participants’ perceptions
of using our tool.

We recruited users to participate in our study by sending
invites to students at our institution. The subjects were un-
dergraduate students who had completed or were completing
Miami University’s CSE 201 (Intro to Software Engineering)
or an equivalent course. Participants were required to have
a core understanding of software development, specifically
knowledge of software modeling, such as UML, to be eligible
for participation.

To answer RQ3, which focused on evaluating collaboration
in creating software models, it was necessary to recruit pairs of
participants who could work together on a collaborative task.
Since participants had no prior experience with the underlying
tool, we randomly paired them up based on their availability
considering all participants to have equal experience. We then
invited two participants at the same time to conduct the study.
First, we asked each participant to individually create a model,
followed by working together on a collaborative task. In the



individual portion, each participant was asked to create two
models using two different approaches. The first model was
created with the traditional approach (using a mouse, drag-
and-drop method), and the other with a sketch-based approach
(creating sketches with a stylus pen/finger). The model created
using the traditional approach formed the baseline model for
comparison, while the SkeMo model created was the target
model for the study. We provided the participants with two
images of UML class diagrams and asked them to create them
using the two different methods. Users were asked to create
an exact model with the same classes and attributes in order
and position. They were asked to create a base model first and
later create the target model. Figures 5a and 5b respectively
show the baseline and target models. Users were provided
with a stylus pen to create the target model individually on a
Microsoft Surface Pro2. For the collaboration task, users were
asked to use their fingers on a large 70” touchscreen device to
create the target model. Fig. 6 shows the target model for the
collaborative study. All these models have the same number
of model elements; however, they differ in structure, and users
were asked to create each from scratch. While it is possible to
construct more intricate models, the choice to utilize three
simplified models for evaluation aimed to represent those
seen in classrooms to gain modeling familiarity, which closely
aligns with one of the objectives of IML.

We collected both qualitative and quantitative data from
users during the study. Our quantitative data includes the time
taken to create the models, the number of errors encountered,
user ratings on their experience, and their preferences for the
tool. Our qualitative data includes any comments or feedback
provided by users on their experience with the tool. We
collected data on time and errors during modeling tasks,
and the remaining data was collected after completing the
modeling tasks. We administered a survey to collect data about
users’ experiences, perceptions, and feedback on using our
tool, which was crucial in addressing our research questions,
particularly RQ1 and RQ3.

The survey contained both qualitative and quantitative ques-
tions on the topics of accuracy of conversion, intuitiveness,
easy of use, usefulness, speed, overall experience, ease of
collaboration, and effectiveness of collaboration. It is impor-
tant to note that the survey data was intended to collect the
participants’ opinions and perspectives on these topics, rather
than the actual evaluations, which came from the observational
data. When users were asked to rate one of these criteria, we
used a scale from 1 to 10, with 10 being the highest rating.

D. User Study Results

Twenty users participated in our study, and all users suc-
cessfully created both the baseline and target models.

We compute the tool’s accuracy in model creation by
dividing the number of correct steps to successfully create
the model by the total number of steps the user takes, while
considering the sketch recognition error. In the event of no
error, a user can successfully create the target model in a total
of seventeen (17) steps, which we consider to be the correct

steps. As shown in the table I, six out of twenty users success-
fully created the model with zero sketch recognition errors and
100% accuracy. We observed a minimum accuracy of 80.95%
with the participant who produced the most sketch recognition
errors. Among all participants, there was an average of 1.25
errors and an average accuracy of 93.5%. The survey question
(question 1) related to the accuracy of the tool supports this, as
the SkeMo was highly rated for accurately converting sketches
to model components, with an average score of 9.2 out of
10. For most users, the tool accurately captured their sketches
and translated them into model components. The minimum
rating for the tool’s accuracy in converting sketches to model
components was 7, while the maximum rating was 10, and
most users rated 9 out of 10.

Regarding intuitiveness, sketch-based modeling was also
positively rated, with an average rating of 9.3 out of 10.
The minimum intuitiveness rating was 7, while the maximum
rating was 10, and most users rated 10 out of 10. Further,
users found it relatively easy to create the given model using
sketches as the input method. The average rating for easiness
in creating the model using the sketch-based approach was
9.6, the minimum rating was 8, and most users rated 10
out of 10. Most users mentioned that they find it easy and
straightforward to create the model using sketches. The overall
experience with the tool, including enjoyment and perception
of usefulness, was also highly rated, with an average score of
9.2 out of 10. Most users rated it a 9 out of 10, while the
minimum and maximum ratings were 7 and 10, respectively.
This indicates that users perceived the tool as enjoyable
and useful. Additionally, all users reported that a sketch-
based modeling approach is a useful tool in model creation,
highlighting its potential value in the software development
process. Each of these results contributes to the answer to
our first research question RQ1; our sketch-based modeling
approach to creating real-time model components is effective
in terms of accuracy, intuitiveness, and ease of use.

To address RQ2, we collected data on the time taken by
each user to complete the base and target models. From the
data presented in Table I, we observed that the maximum time
for creating the base model was 218s, while the maximum
time for the target was 176s. Most users who took more
time to create the model had problems with correctly adding
an attribute to a class that inherits from the parent class,
as the tool doesn’t allow adding the same attribute to both
the child and the parent class. Similarly, the minimum time
for completing the base and target model was 75s and 56s,
respectively. The average time to complete the base model
was 113.8s, while the average time for the target model was
91.9s, which equates to a speedup of 19.3% on average. If
we calculate the speed-up per participant and take the average
of those, this equates to an average participant speed-up of
17.5%. Aside from a small number of exceptions, the data
strongly suggests that creating models using SkeMo is faster
than traditional means of model creation. Further, the survey
results show that all users believed sketch modeling could
be faster than the traditional drag-and-drop method (question
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8). 95% of users preferred sketch-based modeling over the
traditional method (question 9). This data provides an answer
to RQ2; based on the time to complete required models,
sketch-based modeling is more efficient than the traditional
drag-and-drop method in terms of timing and user perception
of efficiency in creating software models.

To address RQ3, a collaborative modeling study was con-
ducted with two users using a large touchscreen monitor that
supported touch gestures. The goal was to create a given target
model (Fig. 6) through collaborative efforts. The time taken
and errors encountered during the model creation process were
recorded and analyzed. From the data, which is summarized
in Table II, we observed that the maximum time taken to
complete the model was 236s, while the minimum was 81s.
The average time to complete the model was 155.5s, which
was longer than the average time that users took to create
the model individually, regardless of the creation method. The
model used for collaboration was found by participants to be
more complex than those in the individual study. While not
the original intent, this complexity led to the necessity for
collaboration in design rather than having one person create
the model independently. The complexities allowed for joint
problem solving, which led to longer completion times in most
cases.

Furthermore, we observed that only one pair of users was
able to successfully create the model with 100% accuracy,
while the minimum accuracy observed was 77.27%. The
average accuracy of the tool when used for collaboration on
the large touchscreen monitor was reduced to 89.14%. Despite
the challenges faced by users in adding correct relations and
encountering more sketch recognition errors, which resulted in
increased time for model completion, these aspects played a
significant role in the collaborative process. Users engaged in
discussions with each other and made efforts to draw sketches
more accurately and add relations correctly, indicating the
importance of communication and collaboration in overcoming
these challenges during the modeling process. Although it may
have taken longer to achieve the goal, the participants were
able to work collaboratively to overcome the challenges faced.

To answer RQ3 using specific data, users were asked to rate
the ease of collaboration with another person for the creation
of models using sketches on a scale of 1 to 10. The average
rating for ease of collaboration was 8.4, with a minimum rating
of 3 and a maximum rating of 10, with most participants rating
it 10 out of 10. This suggests that on average, participants

found collaborating with another person for model creation
using sketches relatively easy. In the open response comments
regarding the ease of collaboration in sketch-based modeling,
some participants mentioned that collaborating with another
person for model creation was enjoyable. Some mentioned that
creating a model alone was better than collaboration. However,
most users commented that they were unable to draw sketches
simultaneously to create the model. Our tool did not support
multi-touch drawing from two users simultaneously, which
was the biggest disappointment for users in collaborative
modeling. Additionally, in terms of the effectiveness of sketch-
based modeling in helping with collaborative modeling, the
participants provided an average rating of 8.3 for effectiveness.
The minimum rating was 4, and the maximum rating was 10,
while most users frequently rated 8 and 9.

Despite their criticisms, users provided an average rating
of 8.4 and 8.3 for the ease and effectiveness of sketch-
based modeling to support collaboration for creating software
models. The overall results and feedback from participants
allow us to answer RQ3. The proposed approach to supporting
collaboration using sketch-based modeling offers room for
improvement; however, the study results indicate that most
participants perceived sketch-based modeling as effective in
supporting collaborative model creation.

VI. CONCLUSION

We conclude this research by presenting our discussion of
possible threats to validity, along with limitations and how
both may be addressed leading into future work.

A. Threats to Validity

External Threats: In our study, students having knowledge
of software development, specifically software modeling, were
asked to complete a specific modeling task. Variability in
modeling tasks and user experience can affect the external
validity of the study. Our findings may not be generalizable
to different modeling tasks or user groups with different
levels of experience or backgrounds. Additionally, our focus
was on real-time sketching for software modeling, and we
do not claim that the results would represent other contexts
or domains. Since we observe varying model performance
on two different input devices (Microsoft Surface Pro vs.
High-resolution touchscreen devices), another external threat
to validity comes from the ability of the model to perform
in varying environments, such as different resolution input



TABLE I: Individual Study Results

SN Baseline
Time (s)

Sketch
Time (s)

Sketch
Recognition
Error

Accuracy

1 119 176 3 85.00
2 142 78 1 94.44
3 75 85 2 89.47
4 128 93 1 94.44
5 218 133 2 89.47
6 99 78 0 100.00
7 168 134 3 85.00
8 114 81 0 100.00
9 90 81 1 94.44
10 114 72 1 94.44
11 102 83 1 94.44
12 97 87 2 89.47
13 91 85 0 100.00
14 140 126 4 80.95
15 87 61 0 100.00
16 84 64 1 94.44
17 137 99 2 89.47
18 87 56 0 100.00
19 99 78 0 100.00
20 85 88 1 94.44
Average 113.8 91.9 1.25 93.50

TABLE II: Collaborative Study Results

SN Time
(s)

Sketch
Recognition Error Accuracy

1 236 3 85.00
2 145 2 89.47
3 144 1 94.44
4 214 4 80.95
5 186 4 80.95
6 104 1 94.44
7 123 1 94.44
8 110 1 94.44
9 81 0 100.00
10 212 5 77.27
Average 155.5 2.2 89.14

devices. This could impact the generalizability of our model’s
performance to real-world scenarios where users may use dif-
ferent devices with varying resolutions. Another threat arises
from the possibility of reactivity in participants’ behavior
during the study, due to their awareness of being observed,
which could introduce biases in the collected data.

Internal Threats: We collected varying data from six users
to reduce the selection bias for preparing a labeled dataset.
However, there may still be biases in selecting participants
for sketch data collection, as different users follow different
approaches to drawing. Therefore, the data we collected may
not represent the broader population of potential users of
the sketch-based modeling tool. Similarly, the quality and
characteristics of the collected sketches can also introduce

TABLE III: Summary of User Study Feedback

Question Min Max Mode Total (/200) Average
1 7 10 9 184 9.2
3 7 10 10 186 9.3
5 8 10 10 192 9.6
7 - - - - 100% Yes
8 - - - - 100% Yes
9 - - - - 95% Yes
10 7 10 9 184 9.2
12 3 10 10 168 8.4
14 4 10 8, 9 166 8.3

potential biases, as they may affect the model’s ability to
classify or interpret sketches accurately. Finally, since the
evaluation took place using simplified models, the survey
questions apply only in the limited setting, and while they
may likely generalize to the other uses of SkeMo, this cannot
be asserted from the data alone.

B. Limitations and Future Work

Our approach to sketch-based modeling has certain lim-
itations that can impact its usability and accuracy. One of
the limitations is the tool’s inability to recognize the text to
identify and update the names of the components, such as the
names of classes and attributes, through sketching. While it is
still possible to update via non-sketch interactions, this limi-
tation hinders our approach’s practical applicability to model
creation using sketching alone. We plan to explore options
including text recognition and voice dictation to better interact
with model properties after initial insertion via sketching.

Another limitation is the lack of multitouch support for
simultaneous sketching. This can limit the collaborative aspect
of the modeling process, as multiple users may not be able
to sketch or interact with the system simultaneously. This
may impact the real-time collaboration and communication
among team members during the modeling process, especially
in scenarios where multiple stakeholders need to provide input
or feedback concurrently. As this is something that wasn’t
really considered during our implementation and came to light
via user feedback, so this is a clear candidate for immediate
inclusion in the next iteration of SkeMo.

Another limitation we observed from our study is the
inconsistent model’s performance on devices with varying
resolutions, which may affect the practical applicability and
accuracy of the tool in real-world scenarios. To realize this,
we could potentially expand our data collection using differ-
ent devices and many participants to ensure optimal sketch
recognition performance.

C. Summary

SkeMo, our approach to sketch-based modeling, involves
converting user-drawn sketches into formal class diagram
components in real-time, with an easy integration of modeling
and sketch interfaces. We used our own trained CNN to
classify user sketches and convert them into model elements.
We evaluated our approach by evaluating our classifier and
through a user study. The results of the user study showed
that sketch-based modeling was effective in terms of accuracy,
intuitiveness, and ease of use, with most users preferring
it over drag-and-drop methods and finding it slightly faster.
We obtained the model’s average cross-validation accuracy of
97.57%, an average tool accuracy of 93.5% when creating
models individually, and 89.14% for collaborative modeling.
Users found real-time sketch-based modeling to be effective
in supporting collaboration for model creation; however, they
find it to be slightly more challenging than creating models
individually, with slightly longer completion times and higher
sketch recognition errors.
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