
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

SimIMA: A Virtual Simulink Intelligent Modeling Assistant
Simulink Intelligent Modeling Assistance through Machine Learning and Model
Clones

Bhisma Adhikari · Eric J. Rapos · Matthew Stephan

Received: date / Accepted: date

Abstract Intelligent virtual model assistance is a key
challenge in cultivating model-driven engineering pro-

liferation and growth. Such assistance will help im-
prove the quality of software models, support education
for students learning modeling, and lower the entry

barriers to new modelers. We present SimIMA, an
intelligent modeling assistant for Simulink, which is an
extremely popular modeling language in both industry
and academia. SimIMA provides modelers with two dif-

ferent forms of data-driven guidance using a knowledge
base of configurable repositories and sources. The first
form of guidance, SimGESTION, suggests to modelers

single-step operations they can perform on their models
as they edit them in their modeling environment.
These suggestions are based on the machine learning

technique of ensemble learning through association
rule mining and frequency classification. The second
form of guidance, SimXAMPLE, presents modelers
with similar/related Simulink systems for modelers to

either insert directly into their environments or to
view for inspiration. SimXAMPLE accomplishes this
through model clone detection. To validate SimIMA,
we conduct experiments using an established, open,
and curated large set of Simulink models coming from
a variety of application domains. Our results show
that both of SimIMA’s forms of guidance are inferring

the appropriate model and element suggestions given
SimIMA’s knowledge base and that SimIMA is both
scalable and efficient. Through our evaluation, SimIMA
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demonstrates a prediction accuracy of 78.86% for block-
level suggestions and 82.04% for full system sugges-

tions.

1 Introduction

Model-driven engineering (MDE) continues to see no-
table adoption in industry [37], educational contexts [17],

and research [19]. As with any evolving and maturing
field, MDE has certain challenges that it must overcome
and milestones it must achieve to flourish and realize

its full potential. One such example, identified at
the “2017 Grand Challenges in Modelling workshop”
and its subsequent publication [19], that MDE must
address is the need for cognizance-based data-driven
approaches to assist engineers while they are developing
their modeling artifacts [21]. Such approaches have
seen much success in traditional, source code, software

engineering contexts, for example, those that provide
coding assistance [11,51,52]. The same does not hold
nearly as true for MDE. One promising approach to
address this open MDE challenge is an intelligent vir-
tual modeling assistant capable of providing data-based
examples and/or guidance to engineers as they create
their software models [21]. This will bring tangible and

measurable benefits to MDE approaches. Mussbacher
et al. [46] further discuss the need and landscape for
intelligent modeling assistance, while also providing a
reference framework, or guidelines, to those building
intelligent modeling assistants (IMA).

In a New Ideas and Emerging Results paper, we pre-
sented our general high-level ideas for realizing an IMA
that employs model clone detection/analysis, inference,
and machine learning [67]. Our ideas included two
forms of cognification and software modeling assistance.

This is a preprint version of the paper accepted to the Journal of Software and Systems Modeling, to appear in 2023.
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The first was suggesting and presenting entire models

to engineers that are similar to incomplete models

they are currently developing for guidance or direct

insertion. These suggested models come from analysis

on a knowledge base consisting of software models from

configurable sources and visualized to engineers in their

native interface. The second was step-wise suggestions

for engineers to consider during development, allowing

them to visualize, analyze, and apply data-driven sug-

gestions.

In this article, we describe our efforts in researching

and developing those ideas. Specifically, we answer

the following research questions by investigating and

developing a research proof of concept in the form

of a virtual Simulink intelligent modeling assistant

(SimIMA),

RQ1 - To what extent can, and how accurate is,

SimIMA in providing step-wise model element sug-

gestions on configurable model sets?

RQ2 - Does SimIMA’s use of model clone detection

to discover similar complete subsystems for in-

sertion/inspiration produce accurate/correct model

suggestions?

While we aim to define our proof of concept in

a language-agnostic generalizable fashion, we chose

Simulink as our initial target language due to its popu-

larity especially in the emerging areas of cyber-physical,

embedded [53], and most recently, machine learning1,

systems. Additionally, there are many open and grow-

ing repositories with Simulink models including Matlab

Central2, SourceForge, and other corpuses [22]. We

also consider and reference IMA guidelines, RF-IMA,

proposed by Mussbacher et al. [46] where appropriate.

SimIMA is composed of two forms of modeling

assistance, corresponding to our research questions, and

enables engineers to request assistance in their native

environments while developing their models. The first

form of modeling assistance, corresponding to our first

research question and termed SimGESTION, provides

engineers with multiple suggestions for which Simulink

block they should add next to their model based on

a combination of techniques from machine learning,

including classification based on association rule mining

(ARM) and frequency matching. We evaluate SimIMA

through empirical experiments using a curated [22] and

independently validated [16] data set. The second form

of modeling assistance, corresponding to our second

research question and termed SimXAMPLE, allows

engineers to 1) visualize similar models based on clone

1 https://www.mathworks.com/help/stats/

machine-learning-in-matlab.html
2 https://www.mathworks.com/matlabcentral/

analysis and data inference with engineer-customizable

repositories and examples, and 2) either select one of

these similar model examples for direct insertion or

display it adjacently for inspiration and guidance as

they create and edit their models. We explicate our

contributions as follows,

1. A model assistance approach that employs machine

learning techniques on configurable model sets to

give engineers step-wise guidance in the develop-

ment of their systems.

2. A model assistance approach that uses model clone

detection on configurable model sets to provide sug-

gestions to engineers for inspiration and application.

3. A realization and demonstration of both of our

approaches in a complete Simulink Intelligent Mod-

eling Assistant, SimIMA, solution available to engi-

neers for use in their native Simulink environments.

4. An evaluation of our approaches using a curated and

established corpus of Simulink models that has been

independently validated.

5. All of our data and artifacts posted on a public and

persistent repository, allowing for reproduction and

replication.

We begin with background information in Section 2.

Following that, we provide an overview of SimIMA in

Section 3 including a running example to help illustrate

our work. Sections 4 and 5 present our approaches for

SimGESTION and SimXAMPLE, respectively, includ-

ing our design decisions, research hurdles, and user

interface decisions for each. Section 6 presents our

evaluation of each aspect of SimIMA. We follow this

up with related work in Section 7, and provide our

conclusions, threats to validity, and future work in

Section 8

2 Background

Given the context of this article, we presume the

reader has a foundational understanding of MDE. We

begin with an introduction to recommender systems

and their use in software engineering. We provide a

brief background on Simulink, as it is the target lan-

guage for our research proof-of-concept. We also outline

model clone detection, as that is what SimXAMPLE

employs to provide assistance. For machine learning

background, we discuss the main concepts relevant to

our SimGESTION assistance approach: classification,

association rule mining, frequency matching, and en-

semble approaches.
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2.1 Recommendation Systems

In this section, we discuss software engineering rec-

ommendation systems in general. In our related work

section, we address related model assistance and com-

pletion work, specifically.

Software suggestion and completion can be consid-

ered a form of software engineering recommendation

systems [55]. There are many successful examples of

source code suggestion and completion systems includ-

ing those that use matching algorithms [51], language-

based techniques [52], and context of methods and

call sites [11]. The Eclipse source code recommender

facility is a prevalent code completion example that

provides suggestions by analyzing API usage statis-

tics [31]. While a modeling assistant is intrinsically

different than all these approaches due to the graphical

nature and context of software modeling, this and

related research contain ideas and concepts we consider

since our research accomplishes an analogous goal.

Even though models typically can be serialized using

a textual representation, editing and completion at

the textual level would not be practical nor useful to

a modeler developing their system. As such, a new

paradigm is needed for intelligent modeling assistance

that incorporates a graphical interface aspect into the

suggestion mechanism.

Our research is based on using previous software

examples. Bruch et al. identify three categories of data

/ information based on their work with source code [18]:

Frequency information is used to provide recommenda-

tions based simply on the number of occurrences of

its use in example codebases.

Association Rules require finding all rules such that

X implies Y, and then recommending Y whenever

future instances of X are identified.

Matching Neighbours involves determining the context

of a variable, searching for its use from example

codebases, and synthesizing recommendations.

We employ aspects of all three categories in devising

our approaches and SimIMA. In Bruch’s case, they

use a feature vector to form a structure. In our case,

the structure is inherent in the model itself and forms

the basis for comparison and suggestion. We determine

the frequency of past use given a set of structural

neighbours and also employ association rules. Our

research on SimXAMPLE aligns also with Proksch’s

work, except in our case our matching neighbor al-

gorithm employs model clone detection [51]. Robbes

and Lanza demonstrated how using repositories and

examples can improve code completion [54], which we

contend holds true for MDE analogously.

While the topic of recommender systems in model

driven engineering is quite new, Almonte et al. present

a survey of current approaches [7]. In the survey they

present an analysis of 66 papers that discuss the issues

of model recommender systems in some form, including

a classification of seven different types of recommender

systems used in MDE applications, as well as various

other classifications.

2.2 Simulink

We employ Simulink as the language for our research

and approach/system development for multiple reasons.

According to its website, Matlab Simulink is used at

over 5000 academic institutions in a variety of STEM

disciplines. Additionally, it has the most mature tech-

niques for model clone detection [69], and is quite pop-

ular and growing in cyber-physical, embedded, and ma-

chine learning systems [53]. Simulink programs/models

are created within the Matlab environment. Simulink

models are data-flow models consisting of three levels

of granularity: whole models, systems, and blocks.

Models contain systems, and systems contain other

(sub) systems, and blocks. Simulink blocks come from

libraries and are connected by signal lines. An example

Simulink model with contained subsystems, various

blocks, and the connecting signal lines is in Fig. 1

with blocks and subsystems labeled by name. Simulink

models have semantics and allow for parametrization

and simulation. Many blocks have corresponding code

that can be embedded on a variety of platforms.

Modelers edit Simulink models through the Matlab en-

vironment by exploring systems and adding, modifying,

and deleting blocks and lines. Developers can write

their own Simulink applications, which include GUIs,

task automation, and various other user-defined func-

tions. Simulink blocks form the basis of the operations

performed on the data being processed by the model-

s/subsystems, and usually represent single operations

such as mathematical operations, data processing, and

logical comparisons. For the purposes of our research,

we omit any analysis of custom block types and focus

only on the standard Simulink block types.

2.2.1 Simulink Model Formats

Recent versions of Simulink produce models in an

SLX format model, however within standard model

repositories, significant numbers of legacy models exist

in the older MDL format. Further, many model analysis

tools, including leading clone detection tools, heavily

rely on models in their MDL format, even necessitating

a tool capable of automatically converting from SLX to
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Fig. 1: An Example Simulink Model showing (sub)systems, blocks, and connecting signal lines

MDL formats [3]. In this section we briefly describe the

differences between these formats.

The original, and still widely used, MDL format is

a plain text representation of the model in a single flat

file, where model properties are stored in a key-value

pair format. The SLX format, which was introduced

in the R2012b version of Matlab and Simulink, is

a Mathworks proprietary format that stores model

contents in an archive file containing mostly XML-

based files stored in a hierarchical structure [3].

2.2.2 Matlab App Designer

Matlab App Designer3 is the recommended way for

building Matlab applications. Using App Designer is

important to us because we want to provide engineers

modeling assistance in their native environments to

3 https://www.mathworks.com/products/matlab/

app-designer.html

reduce disruption and encourage adoption. It provides

a visual-driven approach for creating applications in

which developers can layout components and customize

behavior. It allows us to directly interact with the

Simulink models and their underlying representation-

s/data, while also facilitating external program calls.

2.3 Model Clone Detection

Model clone detection performs model comparison anal-

ysis [69] to discover similar models according to some

similarity definition [25]. Due to the graphical nature of

models, techniques intended for traditional code clones,

such as lexical and syntactic code clone detectors, are

not suited to model clones and require model-specific

techniques [6,25,71]. Model clone pairs can be clustered

and classified into groupings known as model clone

classes, characterizing a repeated modeling pattern [23].
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There are different model clone detection techniques

that work with a variety of model types. The most

mature type of model clone detection is focused on

Simulink models [25,6,50,49], but emerging techniques

for other model languages exist, including UML mod-

els [71,10], and Stateflow [24,40]. There are four dif-

ferent types of model clones. For our research, we are

interested solely in near-miss (Type 3) clones as they

include any exact (Type 1) or renamed clones (Type 2)

and best align with our goal of providing suggestions of

a similar, but not necessarily exact nature, while still

providing multiple plausible and useful suggestions:

Type 3 - Near-Miss Clones are sets of model elements

that are structurally different up to a specific thresh-

old, ignoring visual differences, and names. Struc-

tural changes include different element orderings,

the addition or deletion of elements, and more [6].

Type 4 clones, also known as Semantic Clones, are

different source code fragments that perform the same

function but are implemented using different syntac-

tical representations; Type 4 clones are significantly

more difficult to detect. [56]. The same is true for

Type 4 model clones, which represent groups of model

elements with the same semantic purpose, usually

consisting of different blocks and representations; they

are equally difficult to detect [66]. Due to the inability

to incorporate a reliable Type 4 clone detector into our

framework, we opted to focus on Type 3 clones.

For our research and application, we will be using

the Simone Simulink model clone detector [6]. Simone

detects type 1, 2, and 3 model clones by analyzing

Simulink models’ underlying textual representations.

Simone filters, normalizes, and sorts these textual

representations before performing text-based model

clone detection, which has advantages over graph-based

detection techniques [6]. It additionally clusters model

clones into model clone classes. According to evalua-

tions [70], Simone is the most adept Simulink model

clone detector for detecting Type 3 clones. That, and

Simulink’s prevalence in emerging areas of modeling,

supports our decision to use Simone for our initial

realization and demonstration of our research.

2.4 Machine Learning

Machine learning is a diverse and evolving area. We

focus specifically on the aspects we employ in our

approach to step-wise suggestion, SimGESTION.

2.4.1 Classification

Classification is a form of supervised learning whereby

new items (those being classified) are assigned a class

label [39]. This assignment is based on a classifier that

generalizes new instances based on past data. In the

case of SimGESTION, we are considering a Simulink

block, more specifically its block type, to be a new

instance. The different Simulink block types are the

potential classes of that new instance. Our classifier is

based on a combination of factors we describe herein.

2.4.2 Association Rule Mining

Using association rule mining (ARM) is an established

way of building a classifier [43]. Association rule mining

involves devising rules of association/correspondence

that satisfy some minimum confidence [5]. Simply

put, ARM involves observing that when some set of

elements, for example antecedents X and Y, are present,

some other element, for example consequent Z, is also

often present. The confidence is a number between

0 and 1 that represents the percentage of time that

rule holds true in the rule derivation process. For

our purposes, we are using association rule mining to

determine the association of Simulink block types. For

example, when blocks of type X and Y are present,

how often block Z is present. These rules factor into

our classifier when making our suggestions.

2.4.3 Frequency-and-Context-Based Learning

Another source of data for our classifier is using fre-

quency and context information (FREQ). This is in-

spired by Baruch’s research devising a code completion

approach that considers both frequency of method calls

and context [18]. Specifically, they count the total

number of methods in a program and also consider

context in the form of neighbours. While this is also

a form of association, it differs from ARM in that 1)

the new instance is allowed to be within the set of

antecedents and 2) context (neighbors in this case) is

considered in this form of learning rather than just mere

presence.

2.4.4 Ensemble Learning

Ensemble methods in machine learning are those that

construct multiple classifiers and combine them to

perform classification on new instances [28,74]. This

is often done by weighting of the individual classifiers

and by testing the ensemble classifier. There are many

examples of classifiers being employed by analysts [59].

They often improve prediction and performance by

reducing the risk of obtaining a local minimum, avoid-

ing overfitting, and by having a better hypothesis

discovered by the combination of two classifiers not
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originally possible with a single classifier. We employ

an ensemble approach in SimIMA.

3 SimIMA Overview

In this section, we provide an overview of the ar-

chitecture and main components of SimIMA. At the

highest level, SimIMA is composed of two main mod-

ules: SimGESTION and SimXAMPLE. SimGESTION

provides block-level suggestions for completing models,

addressing our first research question. SimXAMPLE

provides whole system examples to the user for inspira-

tion and/or insertion. It addresses our second research

question.

3.1 SimIMA Components

We define the four components of SimIMA consistent

with the RF-IMA framework [46]: the assistant, the

data acquisition/production layer, the context shadow,

and the optional adaption.

1. The assistant for SimIMA is realized as a Simulink

application that provides graphical recommenda-

tions to engineers directly into their Simulink de-

velopment environment and also contextualizes the

information showing where potential suggestions

can be applied by SimIMA.

2. In SimIMA, our data acquisition/production layer,

which provides access to and allows configuration of

different sources, is facilitated through our repos-

itory configuration within our different Simulink

menus that we customized using App Designer.

These menus connect to our external applications

that perform the data acquisition and suggestion

generation.

3. SimIMA’s context shadow, which captures the con-

text and current activity of the engineer, is the

Simulink environment itself whereby we capture

context information. This includes the engineer’s

current system under development (SUD), the most

recently clicked block (MRCB) by the engineer,

information about the MRCB, and more.

4. While optional, we also have an adaption com-

ponent, which allows engineer feedback to change

both data and context. SimXAMPLE allows the

engineer to regenerate their data after seeing sug-

gested, whole, subsystems by fine tuning both the

parameters of the search and the data. While

SimGESTION does not incorporate feedback at this

point, it is something we consider future work.

The creation of the RF-IMA framework, along with

its evaluation methods [45,46] came from a need for

a standard which did not yet exist. While it may be

too soon to determine whether it will become the de

facto standard for defining and evaluating intelligent

modeling assistants, it currently serves this purpose.

Further, the authors responsible for its creation include

leaders in the fields of software modeling and modeling

assistance, and this added confidence in our usage of

the RF-IMA framework in the creation and evaluation

of SimIMA. While there may later be other frameworks

to reference, at the time of this research, it is the best

benchmark we can measure against.

We present SimIMA’s architecture in Fig. 2, which

involves a combination of components internal and

external to Matlab. For SimXAMPLE, engineers can

request model design assistance through our Simulink

custom menus. We use App Designer to present sugges-

tions to the engineers and Matlab script files to connect,

configure, and execute Simone, which is external to

Matlab. For SimGESTION, we suggest blocks within

the actual model development interfaces. Our machine

learning algorithms are encoded within Matlab scripts.

In both cases, it begins with a work-in-progress model

under development (MUD) by an engineer who requests

assistance. In the case of Simulink, where models

contain one or more (sub)systems, the MUD contains

a (sub)system Under Development (SUD), potentially

along with other (sub)systems. We discuss our research

and approach using some Simulink terms and concepts,

however, our approaches and ideas are intended to

be transferable to other modeling languages unless we

specify otherwise.

SimIMA comes with 2 standard repositories that

can be selected/deselected. Engineers are able to add

custom model repositories through our interface, which

corresponds to the recommendation from Dyck et al.

to allow for model recommenders to query multiple

sources [29]. Currently, for demonstration purposes,

the included “standard” repositories are composed of

a variety of Simulink example models from the “Other

(Unidentified)” category from the Chowdhury et al. [22]

corpus, which we discuss in more detail later. How-

ever, engineers can link to their own in-house model

projects, domain exemplars, and other repositories as

they desire. We plan to extend the standard/default

repositories in the future to link SimIMA to online

model repositories, such as Matlab Central, the Model

Clone Portal (MoCoP) [12], and others including those

identified by Chowdhury et al [22]. We opted for the

“Other (Unidentified)” category for illustrative pur-

poses solely because we were not building models in

any specific domain and felt that a broader selection of
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Fig. 2: SimIMA Architecture Overview

uncategorized models would provide the most general-

izable suggestions.

The latest version of SimIMA’s source is available

on our public and persistent repository [2].

3.2 Running Example - ExampleSUD

In order to best illustrate the application of SimIMA

to systems under development in the remainder of

the paper, we use a running example throughout. Our

running example, ExampleSUD, begins as a relatively

new system undergoing development. We develop Ex-

ampleSUD first using SimGESTION and then SimX-

AMPLE once it is more advanced. This is not meant

necessarily to showcase a standard series of events, but

rather to illustrate the two assistance approaches in one

running example to assist the reader’s understanding.

Our example employs the standard repositories that

come standard in SimIMA to facilitate reproduction

and replicability. The initial composition of Example-

SUD, as seen in Fig. 3, contains a single inport block,

which is a typical starting point for most systems. The

reason this relatively simple example was chosen is to

show that even a single block is sufficient to begin re-

ceiving suggestions from SimGESTION. Additionally,

a more complex example would require an advanced

understanding of both Simulink and the target domain,

Fig. 3: Initial Composition of ExampleSUD

however, beginning with a simple import block allows

the model to be created entirely by suggestion.

4 SimGESTION

This section describes our research in developing an ap-

proach for step-wise suggestions in Simulink, SimGES-

TION. We begin with a presentation of our approach,

including a discussion on our design considerations. We

follow this with our resulting Simulink realization and

user interface, and illustrate it through our running

example.

4.1 Approach

SimGESTION employs an ensemble method approach

for classification due to the benefits afforded by com-

bining multiple classifiers. Based on a review of existing

machine learning methods and related work, along with

an analysis of the type of data available and intended

suggestions, we determined that ARM and FREQ
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Table 1: Example ARM Matrix

Gain Inport Outport Scope Sine Sum
S1 1 0 1 0 0 1
S2 0 1 0 1 0 1
S3 1 0 1 0 1 0
S4 1 0 1 1 0 1

classification techniques were both appropriate and

logical in our context. While other techniques may also

be relevant, these were chosen for their applicability.

Ultimately, a comparison with other similar techniques

would not likely have yielded significantly different

results, and falls outside of the scope of this research.

As per ensemble learning, SimIMA derives classifiers

using ARM and FREQ separately, and weights and

combines those classifiers. This happens each time the

engineer customizes their repositories (data). We now

present our ARM and FREQ algorithms, followed by

the ensemble application process. While we present

our empirically derived parameter/tuning values in this

section, we provide the details of that derivation in

our evaluation section, Section 6. We make all of our

algorithms, scripts, experiments, and data available

online for reproduction and replication [2,1].

4.1.1 ARM Classifier and Suggestions

SimIMA’s first step in ARM is to create a two-

dimensional matrix where columns represent Simulink

block types and rows represent (sub) systems. Within

the matrix, each system row entry will indicate whether

that specific block type is present in that system. Con-

sider the following illustrative example of 4 systems in

the training data and corresponding matrix in Table 1.

A ‘1’ in a cell indicates the presence of a block of

that type in that respective system. To gather this

information, we consider each repository configured by

the engineer. For each repository, we iterate through

each model and its respective subsystems, noting which

block types are present and which are not. When we

encounter a block type not yet in the matrix, we simply

add a new column to the matrix, and update the

entries for that new column accordingly. This allows

us to establish our ARM antecedents-and-consequent

rules/relationships accordingly. The example matrix

corresponds to the following systems containing the

listed blocks,

S1 : [“Sum”, “Gain”, “Outport”]

S2 : [“Inport”, “Sum”, “Scope”]

S3 : [“Gain”, “Outport”, “Sine”]

S4 : [“Gain”, “Outport”, “Scope”, “Sum”]

To produce suggestions, we first establish the con-

text of the assistance request, specifically, the SUD.

As part of the context, we consider all block types

present in the SUD to be the antecedents, including the

MRCB. During our empirical experiments optimizing

our classifier using grid search with nested 10-fold cross

validation, we found loosening the percentage of re-

quired antecedents in a row yielded better performance.

We found that requiring 87 % or more of the antecedent

blocks be present provided the best results. We call

this fraction i.e. 0.87 the ANT REDUCTION. We then

traverse the ARM matrix and for any block type that is

present as a consequent to our antecedents, we calculate

the confidence. Our confidence is measured as a fraction

of the number of rows that have our antecedents and

consequent over those rows in the matrix that have just

the antecedents. When that confidence is non-zero, we

consider it as a potential suggestion. After we complete

this, we sort the suggestions by their confidence for

presentation purposes.

To illustrate this process with an example, let us

assume that our ARM model is trained on the data pre-

sented in Table 1. Also, let us assume that the current

SUD contains only “Gain” and “Outport” block types.

To simplify the example, let us set ANT REDUCTION

to 1. The ARM model computes confidence values

for all block-types present in the ARM matrix that

are missing in the current SUD as follows, where the

numerators and denominators represent the number of

rows in the table containing at least those blocks:

CInport =
Gain, Outport, Inport

Gain, Outport
=

0

3
= 0

CScope =
Gain, Outport, Scope

Gain, Outport
=

1

3
= 0.33

CSine =
Gain, Outport, Sine

Gain, Outport
=

1

3
= 0.33

CSum =
Gain, Outport, Sum

Gain, Outport
=

2

3
= 0.66

The ARM Model filters out any suggestions with a

confidence equal to zero and then sorts the suggestions

based on their confidence values. Ties, if any, are

broken alphabetically by suggestion’s block-type. For

our example, the model then returns the final sorted

list of suggestions as [Sum (0.66), Scope (0.33), Sine

(0.33)].

4.1.2 FREQ Classifier and Suggestions

In employing frequency and context data, we were

inspired by related source code work that considers

method frequency [18]. For this classifier, SimIMA

creates a nested-map data structure that summarizes

the training data. We present an illustration of a

contrived instance of that data structure in Listing 1
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consisting of only two block types. Looking first at the

‘Sum’ component on line 3, the ‘count’ represents the

total number of Sum blocks in the training set. The

‘src’ is the total number of blocks connected to the

src port of ‘Sum’ blocks in training set. This tally is

further broken down into the ‘details’ component. The

‘dst’ component contains the analogous information

for all the Sum blocks in the training set. The ‘both’

component contains the summation of both ‘src’ and

‘dst’. This pattern continues on line 32, with the ‘Gain’

block representing all Gain blocks in the training set.

There is one such entry for each type of block SimIMA

discovers during its repository (data) analysis. This

nested map is important in the frequency analysis as it

provides a complete representation of all blocks present

in the repository, forming the basis of the classifier. The

nested map is encoded in a Matlab Structure Array4,

which appears similar to a JSON representation.

1 {

2 'Sum': {

3 'count': 304,

4 'src':{
5 'count': 120,

6 'details': {

7 'Sum': 55,

8 'Gain': 21,

9 'Inport': 44,

10 }

11 },

12 'dst':{
13 'count': 167,

14 'details': {

15 'Sum': 35,

16 'Gain': 13,

17 'Inport': 32,

18 'Outport': 87,

19 }

20 },

21 'both':{
22 'count': 287,

23 'details': {

24 'Sum': 90,

25 'Gain': 34,

26 'Inport': 76,

27 'Outport': 87,

28 }

29 },

30 },

31 'Gain': {

32 'count': 434,

33 'src':{
34 'count': 42,

35 'details': {

36 'Sum': 15,

37 'Gain': 23,

38 'Inport': 4,

39 }

40 },

4 https://www.mathworks.com/help/matlab/ref/struct.

html

41 'dst':{
42 'count': 107,

43 'details': {

44 'Sum': 35,

45 'Gain': 13,

46 'Inport': 32,

47 'Outport': 27,

48 }

49 },

50 'both':{
51 'count': 149,

52 'details': {

53 'Sum': 50,

54 'Gain': 36,

55 'Inport': 36,

56 'Outport': 27,

57 }

58 },

59
60 },

61 }

Listing 1: Example of Frequency Data

When suggestions are requested by the engineer,

SimIMA captures the MUD and the MRCB’s block

type, T. SimIMA then derives a classifier using two

different calculations. Firstly, it finds all blocks that

are connected to T-type blocks as destination blocks.

It then calculates a confidence value for each potential

suggestion based on how often that suggestion was

found as a destination block. Secondly, it also considers

context in the form of neighbours. That is, it considers

all blocks that are neighbours (sources or destinations)

of T-type blocks. SimIMA once again calculates the

confidence for each suggestion by seeing the frequency

of that suggestion in all neighbours of T-type blocks.

In deriving a total classifier for FREQ, we empiri-

cally derived a weighting of the suggestions based on

MRCB and its neighbours. Specifically, we found that

weighting destination alone at 0.9 and neighbours at

0.1 yielded the best accuracy.

4.1.3 Ensemble Classifier and Suggestions

After deriving the separate classifiers from ARM and

FREQ whenever there is a change in the reposito-

ries, we employ an ensemble learning methodology

to create one single classifier. Our algorithm merges

the suggestions together from ARM and FREQ using

our empirically derived weights to calculate a “total”

confidence consistent with other ensemble methods that

combine classifiers by “taking a (weighted) vote of

their predictions”, which was informed by the model

presented by Dietterich [28]. We illustrate this in

pseudocode in Listing 2. The key aspects are our use

of weights for calculating confidence on lines 9 and

16 for ARM and FREQ, respectively. Confidence for
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a suggestion starts at zero and is grown only when

suggested by ARM or FREQ and weighted according

to their respective weights. Our empirical derivation,

which we describe in Section 6, had us set these weights

as 0.3 for ARM and 0.7 for FREQ.

1 FUNCTION mergeSuggs(suggsArm, suggsFreq,

↪→ weightArm, weightFreq)

2 suggs = new collection

3 For each suggestion SA in suggsArm:

4 If there does not exist a suggestion S in

↪→ suggs such that S.blockType == SA.

↪→ blockType:

5 Create suggestion S

6 S.blockType = SA.blockType

7 S.confidence = 0

8 Add S to suggs

9 S.confidence += SA.confidence * weightArm

10 For each suggestion SF in suggsFreq:

11 If there does not exist a suggestion S in

↪→ suggs such that S.blockType == SF.

↪→ blockType:

12 Create suggestion S

13 S.blockType = SF.blockType

14 S.confidence = 0

15 Add S to suggs

16 S.confidence += SF.confidence * weightFreq

17 Sort suggs by confidence -- high to low

18 Return suggs

Listing 2: Psuedocode for Ensemble Classifier Creation

4.1.4 Performance Tuning

In general, training these prediction classifiers involves

loading the Simulink models from the standard and

custom repositories in Simulink and extracting the in-

formation needed by SimGESTION. In our experiments

and experience, it takes roughly less than a second per

Simulink model to train the two prediction classifiers.

This can vary depending on the size of the models.

To speed up the process, we employed a number of

optimizations since this performance would not scale

well for large model repositories.

Firstly, we conduct “preliminary training” on the

standard repositories. Specifically, we train both ARM

and FREQ on those repositories and in all 3 permu-

tations of both being selected, or just one of them

being selected. Secondly, we employ a cache-like ap-

proach. For ARM and FREQ, we maintain a hash of

the table/matrix and the frequency data, respectively.

When using SimIMA to train ARM or FREQ, we

first compute the hash value of the model file and see

if that data is available in the corresponding cache.

If so, we use that information to prevent having to

retrain on data that already exists, thus enhancing

performance when possible. Lastly, we perform classifier

merging within ARM and within FREQ by considering

the standard and custom repositories separately and

merging after. This occurs each time the engineer makes

a change in their selection of repositories. SimGES-

TION begins by loading in the appropriate preliminary

trained classifiers of the standard repositories from our

first optimization. It then compares the model files

in the new custom repositories, and if it finds differ-

ences, then it updates the classifiers. It then performs

classifier merging of the standard repositories classifier

and the custom repositories classifier. For FREQ, this

involves updating all the appropriate data. For ARM,

we concatenate the two matrices into one. For context,

details about the size and diversity of block types in

the standard repositories are presented in Section 6.1.

The full repositories are available within our evaluation

data [1].

4.2 User Interface

To allow for engineer customization of data and learn-

ing parameters, we used Simulink App Designer to

implement a SimIMA Block-Level Suggestion Config-

uration wizard. We illustrate this wizard in Fig. 4.

We included the call to the wizard in the same model

context menu as all other SimIMA commands. Within

the wizard, engineers are able to adjust the number

of suggestions shown by SimIMA, choose which of

the standard repositories to include, add their own

custom repositories, and adjust the performance of the

recommendation. The performance slider allows the

user to choose between speed and accuracy with 3

fixed positions. Prioritizing speed uses only the FREQ

model because it produces suggestions through a look-

up of its nested-map data. Thus, its suggestion-retrieval

time is independent of the training data size, that

is, O(1). This is in contrast to the retrieval time

of ARM, which grows with the training data size.

Prioritizing accuracy uses the ensemble model. The

balanced option applies only the ARM model for a mix

of speed and accuracy. While we have not completed a

full analysis of speed vs. accuracy, these three settings

allow for some customization by the user based on our

initial comparisons. Any time an engineer changes the

repository, it triggers a regeneration of the classifiers as

appropriate/needed.

4.3 ExampleSUD

We start by querying SimGESTION on the initial

ExampleSUD, containing the lone inport. This request

is made by right clicking the block to reveal its context

menu, to which we have added an option to have
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Fig. 4: SimIMA Block-Level Suggestion Configuration

Wizard

SimGESTION produce suggestions. This provides the

user with the top suggested, six (by default) blocks that

we could connect. We illustrate the in-model suggestion

view for this initial query in Fig. 5. Beside each block we

see the confidence in that particular suggestion. For this

running example, we opt to select the top most ranked

non-terminal block to continue building the model in a

step-wise fashion, with the most recently inserted block

acting as the MRCB for the next suggestion. Following

this process for four insertions, we produce the interim

model in Fig. 6a. Continuing to apply a total of seven

suggestions, we produce the interim model shown in

Fig. 6b. SimGESTION can be applied continuously

in this manner as long as the engineer wants to keep

suggesting blocks to insert. Using a different MRCB will

yield different suggestion results. Suggestions of where

to connect the suggested blocks are not made. Instead,

SimGESTION suggests a block that should connect to

the MRCB, but the exact connectivity is left to the user

to decide.

5 SimXAMPLE - Complete Model Examples

In this section, we present an overview of the SimX-

AMPLE process followed by a presentation of its

phases, including our research hurdles and resulting

process implementations. While our implementations

are Simulink specific, our general process/concept is

Fig. 5: Initial Suggestions for First Insertion into Ex-

ampleSUD

(a) After four applications

(b) After seven applications

Fig. 6: Interim views of ExampleSUD after repeated

applications of SimGESTION

aimed to be applicable to any language that has type-

3 model clone detection capabilities. The SimXAM-

PLE process, which we illustrate in Fig. 7, infers and

visualizes model suggestions to engineers through a

four-phase process: model clone detection, subsystem

recommendation, candidate selection, and application

to the engineer’s model. At the highest level, it begins

with a MUD. It ends with that model being updat-

ed/replaced, depending on the engineer’s preference.

More specifically, the input to this process is any MUD

that the engineer is currently developing. When an

engineer is unsure of how to complete an SUD within

the MUD, they can use SimXAMPLE to find examples
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of other models that have similar initial structure. This

allows them to comprehend how other modelers have

completed similar systems, and optionally insert and/or

merge them into their implementations. Additionally,

secondary SimXAMPLE use cases include when the

engineer has just completed creating a subsystem, or

is evaluating an existing subsystem, and wants to com-

pare visually their subsystem to other similar design

alternatives, potentially for optimization or verification.

The significant contributions of SimXAMPLE over the

traditional application of model clone detection are

in the configuration, presentation, and application of

model clones, all of which are included in the default

use of SimXAMPLE and described in this section. We

now describe each phase, first conceptually, followed by

how we realized it for SimXAMPLE specifically.

5.1 Phase 1: Clone Detection

The input to this first phase is the SUD. Its output

is model clone detection data that are able to be

interpreted by the modeling assistant in such a way

that the assistant can provide recommendations to the

engineer. The essence of this phase is the inclusion

of model clone detection directly into the targeted

environment. That is, a model clone detector capable

of detecting Type 3 model clones must be “hooked”

into the engineers’ interface. This includes being able

to receive sufficient SUD data such that the model

clone detector can perform its analysis. Additionally,

the engineer must be able to specify the knowledge

base, in the form of repositories and sources, that the

intelligent modeling assistant should have the model

clone detector consider when inferring example model

clones. Once the clone detector is configured visually

in this manner by the engineer, the modeling assistant

must be able to conduct the model clone analysis and

inference without requiring the engineer to leave their

interface as per established responsive requirements

when implementing model recommenders [29].

5.1.1 Phase 1 Implementation

To achieve and realize this phase, we developed a user

interface using AppDesigner. We have our custom ap-

plication available via the menu of any Simulink model

or subsystem. An engineer interested in a suggestion

from SimXAMPLE can select the menu item from

the menu of their SUD and be presented our phase 1

SimXAMPLE interface, or “landing page”. We present

an example of the SimXAMPLE landing page later

during our running example in Fig. 11.

As we illustrate on the left of Fig. 11, the engineer

is prompted to select the knowledge base repositories

that SimXAMPLE will search and consider for clone

analysis along with the SUD. Based on the reposi-

tories selected by the engineer, SimXAMPLE invokes

Simone’s cross-clone functionality. It also configures its

clone similarity thresholds and other settings. Based on

existing work evaluating Simone’s ideal clone detection

settings [70], we set Simone to use a 30% difference

(70% similar) threshold by default, which finds model

clones that are 30% different or less according to its

algorithm. This difference threshold has been previ-

ously established and evaluated to find models that are

related and useful clones [70]. Engineers can change this

difference threshold according to their preference via

the radio button we showcase in Fig. 11 by selecting

Very (> 90%), Somewhat (> 80%), or Less similar

(> 70%), which we termed as such for user friendliness.

This adheres to Dyck et al. recommendation pertaining

to “allowing multiple recommender strategies” [29].

The cross-clone function performs model clone detec-

tion on the SUD against/across the complete set of

models in all selected repositories. That is, it looks for

clones of the SUD within the selected repositories, but

will not find clones among the repositories themselves,

focusing only on clone pairs containing the SUD.

The clone detection process is conducted in the

background by SimXAMPLE. This use of clone detec-

tion on only the SUD rather than the complete model

allows SimXAMPLE to focus on a local context rather

than being obfuscated by model content not relevant

to the current design context due to the nested clone

problem [6]. This problem is an interesting research

challenge we had to address. Specifically, Simone re-

ports only the outermost model clones that meet its

threshold and not any inner model clones. This is an

issue because, under standard circumstances, Simone

takes as input two Simulink models and detects model

clones at the system level. If we were to pass in

the MUD containing the SUD, Simone may identify

system clones at a higher level/hierarchy than the SUD

within the MUD, as seen in Fig. 8a. Thus, to avoid

the nested clone problem, we do not treat the actual

MUD as input. Instead, we create a temporary MUD

that encapsulates and contains the SUD as the top-

level system, while maintaining all the subsystems and

elements contained within/below the SUD, as shown

in Fig. 8b. We then run cross-clone detection with

that temporary MUD. Once SimXAMPLE includes,

configures, and executes the model clone detector,

it must interpret and process the results to provide

recommendations to the engineers, which is the focus

of the next phase.
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Fig. 7: SimXAMPLE Process Overview

(a) Example of Nested Clone Problem:
Only the top-level (70%) match would be
reported

(b) Solution to the Nested Clone Problem:
By using the SUD as input, the best match
is found

Fig. 8: The Nested Clone Problem

5.2 Phase 2: Subsystem Recommendation

This phase takes as input the tailored model clone

detection results from the prior phase. This phase has

the output of a list of specific (sub)system recommen-

dations. The model clone detection results must be

interpreted by a modeling assistant in such a way that

only the most similar/related model clones are inferred

and visualized to the engineer since that is what

most likely mirrors their current intent. Depending on

the nature of the model clone detection report and

results, this involves various forms of interpretation and

processing. After completing that interpretation and

processing, the modeling assistant must present these

results in a responsive non-blocking manner [30] that is

natural and organic to the engineer’s processes.

5.2.1 Phase 2 Implementation

Given the fairly extensive model clone detection report

produced by Simone, SimXAMPLE must interpret and

visualize only the most related and similar type 3 model

clones to the engineer for consideration. SimIMA relies

only on the serialized clone detection reports, such

as the example below, for identifying the potential

suggestions. However, it uses the internal Simulink

model representations when displaying or applying the

suggestions in later phases.

Listing 3: Sample Simone Report

1 <clones>

2 <systeminfo processor="nicad3" system="mdl-

↪→ file" granularity="systems-sort-blind



14 Adhikari, Rapos, and Stephan

↪→ " threshold="30%" minlines="10"

↪→ maxlines="20000"/>

3 <cloneinfo npcs="23" npairs="10"/>

4 <runinfo ncompares="180" cputime="29160"/>

5 <clone nlines="55" similarity="70">

6 <source file="mdl-file/sud.mdl" startline

↪→ ="2" endline="83" pcid="1"></

↪→ source>

7 <source file="mdl-files/repo1/

↪→ adder_in_subsystem.mdl" startline=

↪→ "1116" endline="1228" pcid="16"></

↪→ source>

8 </clone>

9 ...

10 <clone nlines="44" similarity="79">

11 <source file="mdl-file/sud.mdl" startline

↪→ ="2" endline="83" pcid="1"></

↪→ source>

12 <source file="mdl-files/repo1/

↪→ adder_without_scope.mdl" startline

↪→ ="1058" endline="1120" pcid="18"><

↪→ /source>

13 </clone>

14 </clones>

There are a number of considerations in deriving sug-

gestions, including querying, ranking, and filtering [29].

Our initial implementation employs ranking sugges-

tions based on their similarity to the SUD according to

Simone’s algorithm. To facilitate SimXAMPLE’s sug-

gestions of the most similar model systems, we imple-

ment filtering and sorting of the model clone detection

results. The report from Simone’s cross cloning feature

is an XML report containing pairs of clones, with each

pair containing the SUD as one of its elements, and

supplemental data about the clone pairs. We provide

an excerpt of such a report in Listing 3 to help us

explain our interpretation and processing. The first step

in calculating the suggestions is parsing this report to

create an internal representation within Simulink for

further processing.

In parsing the report, SimXAMPLE gains an in-

ternal representation that consists of a list of Clone
objects, each with

– nlines: the number of source lines contained in the

clone

– similarity : the percentage of similar lines between

the clone pair

– source1 : a Source object representing the SUD

– source2 : a Source object representing the potential

suggestion system

SimXAMPLE sorts and filters this clone list to

provide optimal complete-system suggestions. First,

SimXAMPLE sorts the list in decreasing order of

similarity. It then filters that sorted list to provide the

maximum number of suggestions, which is an engineer-

configurable value, set by default to 10. Our filtering

algorithm removes any clone pairs that have 100%

similarity, as identical clones are not useful suggestions.

It then removes the suggestions that exist after the

maximum suggestion limit. The resulting list contains

at most 10 clone pairs, which form the suggestions for

completing the SUD.

For each suggestion, SimXAMPLE creates an inter-

nal model file and an image file for use in suggestion

processing and visualization. It stores a complete Sug-
gestion object, which has an internal representation

consisting of

– similarity : the similarity to the SUD

– source: a Source object representing the potential

suggestion system, corresponding to source2 in a

Clone object

– mdlFile: the file path to the MDL file containing the

subsystem

– imgFile: the file path to the image file representing

the system for displaying in the next phase

– rank : the numerical ranking of the suggestion

SimXAMPLE passes the list of Suggestion objects

to the third phase for visualization to, and eventual

selection by, the engineer.

5.3 Phase 3: Candidate Selection

This phase takes as input the inferred system recom-

mendations that must be visualized to the engineer

for them to browse. It ends with output representing

an engineer choice/selection of which system they

want to load for inspiration or direct application in

to their model. This ability to directly insert and

apply recommendations from a modeling assistant is

consistent with the guidelines from Dyck et al [29].

We included the customization feature in SimXAM-

PLE to allow engineers to alter/update the sugges-

tions through selecting alternative repositories, adding

engineer-defined repositories, or adjusting the similarity

threshold. They can then “refresh” the results through

the corresponding button on the landing page. This

causes the whole process to begin anew with new

parameters. The SimXAMPLE interface is interactive

and any changes to these parameters are reflected in

the displayed results responsively and in real time.

5.3.1 Phase 3 Implementation

As we illustrate on the right of Fig. 11, SimXAMPLE

presents the engineer with the two most similar and

related suggestions at first. SimXAMPLE represents

and visualizes the inferred systems to the engineer

directly in the SimXAMPLE interface within Matlab by



SimIMA: A Virtual Simulink Intelligent Modeling Assistant 15

loading the model containing the systems and capturing

an image representation at the appropriate hierarchy

level of the respective inferred system suggestions. The

interface visualizes each two options side-by-side with

the similarity value of each candidate. The engineer

has the ability to browse through pairs of sugges-

tions, sorted by similarity ranking, using navigational

buttons. SimXAMPLE displays the 10 most similar

suggestions. An essential feature of our SimXAMPLE

tool interface is the ability to select the desired sug-

gested system directly in the interface by clicking on

its representative image. This loads the model for

further processing and prepares it for the next phase.

This chosen (sub)system, which we refer to herein as

the System From Suggestion (SFS), has already been

loaded into Simulink’s memory by SimXAMPLE during

the previous phase, allowing SimXAMPLE to utilize it

in the next phase, efficiently and responsively.

5.4 Phase 4: Application to User Model

The input to this final phase is the engineer-selected

system they wish to load for inspiration and/or direct

insertion into the modeling environment. There must

be enough (meta)data about the system such that

a modeling assistant can insert the system into the

engineer’s environment as correctly as possible, given

the context. This includes any connections that are

being replaced, or those that are implicit. The output

for this phase and the process as a whole is an updated

interface and model consistent with the engineer’s

expectations based on their selected suggestion.

5.4.1 Phase 4 Implementation

With the SFS selected by the engineer via the SimX-

AMPLE interface, the final step is the application of the

SFS to the SUD. Rather than the simplified approach

of merely replacing the entire SUD with the contents

of the SFS as is, it is necessary for us to consider the

impact of the replacement on the MUD as a whole. This

introduces potential MUD variation that may occur due

to potential mismatches in the block-port signatures of

the SUD. Since we are using Type 3 model clones as our

data, it is possible that the SFS has a different number

of ports, such as inports, outports, or a combination

of both, than the SUD. Thus, a direct replacement

may cause inconsistencies. There are multiple possible

approaches that we considered for SimXAMPLE to

perform a replacement, which we categorize as follows,

1. direct copy of SFS into SUD

2. automatic merging of SFS into SUD

3. intelligent copy of SFS into SUD with engineer

intervention

The first option can lead to unconnected ports, lost

information, or model-build errors if done naively by

a model assistant. For these reasons, we determined

it not to be a viable solution on its own. The second

option involves merging the two systems automatically

to maintain the signature of the SUD while applying the

logic and design of the SFS. This avoids the issues with

the first option. However, automatic efficient model

merging is an open research problem, one that has been

demonstrated not fit for software engineering needs [14]

nor able to scale [58] beyond polynomial time. The

third option is one that we devised as a custom hybrid

heuristic whereby we have SimXAMPLE copy the SFS

into the SUD (replacing contents), detect any changes

to the block signature, and report these to the engineer

for their inspection and intervention. This intelligent

and user-assisted copy method of SFS application

replaces all elements of the SUD with those from the

candidate subsystem only after performing a block

signature comparison and indicating any differences

in the number of inports or outports to the engineer

and asking for their intervention. SimXAMPLE realizes

the intelligent assisted copy through the application

of a heuristic approach that examines the location of

the SUD within the MUD as well as the SFS within

its respective model file. We represent this heuristic

decision process in Fig. 9. The assisted copy method

identifies five potential actions, which we place into four

scenarios, based on the locations and signatures of the

SUD and SFS:

1. Replace entire model file: if both the SUD and

SFS are top level systems, SimXAMPLE replaces

the entire MUD with the model containing the SFS

2. Copy all contents of SFS into MUD: if the SUD

is a top level system but the SFS is contained within

a subsystem, SimXAMPLE places the contents of

the SFS at the top level of the MUD without

containment

3. Replace SUD with SFS and connect lines: if

the SUD is contained within a subsystem and con-

nected to the surrounding MUD then the connec-

tions become relevant. In this situation SimXAM-

PLE replaces the SUD with the SFS and connects all

ports if and only if there are exactly 1 inport and 1

outport in both the SUD and SFS - Note: if the SFS

is not contained within a subsystem, SimXAMPLE

must first wrap/place it within one before applying

this option or the next

4. Engineer Guided Replacement: Similar to the

previous option, if the SUD is contained, the re-

placement of the SUD with the SFS is possible.
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Fig. 9: Decision Process for Inserting SFS into SUD

However, if the block signatures do not have exactly

1 inport and 1 outport, this necessitates engineer

notification and intervention, which SimXAMPLE

treats in one of two ways:

(a) Abort Replacement: if the comparison of the

SUD and SFS reveals that either the number of

inports do not match or the number of outports

do not match, SimXAMPLE asks the engineer

if they wish to proceed with replacement given

the mismatch (Fig. 10a). If they opt not to,

SimXAMPLE aborts the replacement

(b) Replace SUD with SFS and ask engineer

to adjust signal connections: if the compari-

son yields a match for both inports and outports,

or if the engineer opts to continue merging,

SimXAMPLE can make the substitution directly

and prompts the engineer to inspect/adjust the

connections (Fig. 10b)

Unless the context and choices lead to aborting the

replacement, the suggestion application process can be

generalized as follows:

1. compare block-port signatures of SUD and selected

SFS

2. prompt user as appropriate (Fig. 10a)

3. remove all existing blocks within SUD

4. copy all blocks from selected SFS into SUD

5. connect SUD to blocks one level above, as appropri-

ate/possible, notifying the user of the need to make

additional connections (Fig. 10b)

(a) Prompt to Proceed with Replacement

(b) Notification to Adjust Connections Manually

Fig. 10: Engineer-Guided Replacement Notifications

A successful insertion of the SFS into the SUD

constitutes a complete application of SimXAMPLE. A

demonstration of this application can be seen in our

running example in Section 5.5. SimXAMPLE makes

changes primarily within its current modeling context,

allowing the engineer to observe any updates on the

screen without navigating through the model. The only

potential changes made outside of the local context

relate to connections to the SUD at a higher level

of the model hierarchy, which SimXAMPLE addresses
through its user prompts. Following this final phase, the

engineer can continue the development of their system,

including using SimXAMPLE again for any in-progress

or recently completed systems.

5.5 ExampleSUD

ExampleSUD is in a mostly complete state after succes-

sive applications of SimGESTION, as we demonstrated

in Fig. 6b. We now apply SimXAMPLE to find similar

complete systems as suggestions for insertion into the

system under development. Querying SimXAMPLE

with the ExampleSUD as it exists in Fig. 6b leads

to the the suggestions we show in Fig. 11. It is

worth noting that the suggestions may appear visually

different from the engineer’s input model, such as they

do in this example. Since Simone’s process relies on the

underlying textual representations, the similarity values

are also based on the textual similarities, which is what
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Fig. 11: Top two suggestions presented by SimXAMPLE as candidates for insertion into ExampleSUD

Fig. 12: ExampleSUD after inserting the suggestion

from SimXAMPLE

yields the high similarity values, meaning the suggested

models, while potentially appearing different, are more

similar than one may suspect upon initial visual in-

spection. Ultimately the engineer is free to choose, or

opt not to choose, any of the provided suggestions, or

simply use them as inspiration to complete their model.

In our running example, we opt to select Suggestion 2

for insertion. After the insertion, ExampleSUD is now

complete, as we illustrate in Fig. 12.

6 Evaluation

In this section, we present our evaluation of Sim-

IMA. We evaluate SimGESTION and SimXAMPLE

independently, focusing mostly on the evaluation of

the approaches/algorithms. At this time, we consider

user evaluations and studies out of scope and future

work. To be meaningful, such endeavours will require

multiple users from different domains. We also omit

a formal systematic performance analysis from this

current evaluation, as this research was a proof of

concept and exploratory, and there does not currently

exist a benchmark nor are there comparable tools to

measure against. It is our goal, once this framework

is fully realized, to provide benchmark data for future

approaches to measure against. We do perform brief

analyses of performance throughout, but mainly as an

internal metric. Our goal in this work is to demonstrate

the feasibility of our two forms of modeling assistance

and develop a prototype. Thus, we focus our evaluations

accordingly. We do additionally use existing work on

evaluating IMAs to conduct a qualitative evaluation.

We begin with a discussion of the data we use through-

out our evaluations.

6.1 Data

For our experiments, we leveraged a large publicly

available and curated corpus of Simulink models [22].

Additionally, Boll et al. independently evaluated and

validated this set for empirical research [16]. Through

investigation and consultation with industry partners

they note that the models are suitable for empirical

research. Many of the models are “mature” and large

enough for analysis purposes. They are diverse enough

that they facilitate good replication opportunities as

well. Some concerns regarding the set are that some

projects are no longer under development and code

generation is not well represented. Neither of these are

concerns for our purposes, however.

There are a total of 946 model files in this set,

including both Simulink MDL (573) and SLX (373)

formats. We sorted these models into similar sets

based on their domains to provide the most valuable
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Table 2: Dataset Information

Domain Subsystems Block Types
Automotive 1258 83
Avionics 2437 72
Electronics 19133 124
Energy 8029 100
Robotics 1090 91
Other 146 51
ALL DOMAINS 32093 130

suggestions. To achieve this we cross referenced the

domains indicated explicitly by the corpus curators

with our independent analysis of model and docu-

mentation content. This left us with 6 non-mutually-

exclusive collections: automotive, avionics, electronics,

energy, robotics, and other. We include these models,

sorted by domain and publish them on a public and

persistent repository [1]. They can all also be found

either directly on the corpus’ website or through a link

on that same website. While we could have chosen a

variety of models for evaluation, we use these from

the corpus for two reasons: to facilitate independent

verification and replication of our experiments due to

their public availability, and the level of variety and

realism in the models as established by the independent

evaluation.

To illustrate the diversity of the models used in

this analysis, we performed an analysis of the unique

block types found in each domain to illustrate the

variability of the inputs. A summary of these results

can be found in Table 2 along with the number of

subsystems contained within the dataset.

6.2 SimGESTION Evaluation

To conduct the evaluation of SimGESTION, we use the

established method for measuring prediction accuracy

and error classification, K-fold cross validation [9,

33]. This involves splitting data into k complimentary

subsets, using some for learning/training and the others

for testing/evaluating performance [9], and repeat the

process so that each of the k sets is used once as

the test set. Specifically, we use 10-Fold Nested Cross-

Validation (CV) approach. The outer folds serve to

evaluate the prediction models while the inner folds

serve to tune/optimize the model hyperparameters. For

each category of Simulink models, we first split the

entire dataset into 10 folds/parts. Then, we run the

evaluation experiments 10 times such that 9 of the folds

are used to train the block-prediction models (model-

building set), while the remaining 1 fold is used to

test the prediction models (testing set). For each of

these outer 10 folds, and for each combination of model

hyperparameters, the model-building dataset is further

split into 10 inner folds. 9 of these inner folds are used

to train the prediction models (training set) while the

remaining 1 fold (validation set) is used to evaluate

their performance. We repeat this process such that

each of the inner folds is used as the validation set

exactly once, and track the best model hyperparameters

throughout he process. We combine this nested cross

validation with mutation testing [8] to conduct our

evaluation.

6.2.1 Data Preparation

The corpus contains a total of 946 Simulink model

files. We discovered 16 of these models from the corpus

were invalid because they failed to load successfully

in the Simulink versions (R2019b and R2021a) on

which we ran these experiments, and removed them

immediately. 35 of the model files were not fully

navigable, that is, Simulink had errors when trying to

fetch “params” for some blocks. So we removed those.

Similarly, 362 of these model files were found to be

immutable and thus unusable for our purposes. This

was either because they had no suitable block to delete

at all, or because mutating them would result in a

(sub)system with no blocks available to be set as the

MRCB. Following the removal of these models, our final

model set for SimGESTION consisted of 533 unique

Simulink models for our evaluation experiments. Based

on our independent analysis of model and documen-

tation content and cross-referencing with the corpus

data, we categorized these 533 Simulink models into

six categories: automotive, avionics, electronics, energy,

robotics, and other, containing 63, 70, 320, 126, 157,

and 69 Simulink models respectively. We removed a few

randomly selected models from some of these categories

to end up with multiples of 10 to better prepare

for 10-fold cross validation and a simplified analysis.

After this removal, we had the model counts of 60

automotive, 70 avionics, 320 electronics, 120 energy,

150 robotics, and 60 other. Finally, we split each of

these categories’ model files randomly (using a seed for

reproducibility) into 10 folds to for evaluation using

10-fold cross-validation. The decision to separate the

model set into domains rather than combining them for

a larger set of models to train on was made to ensure

that suggestions are being drawn from only models

with similar applications. While increasing the data

provided to our classifier gives a larger set to train on

and classify against, the models from other domains

may contain design patterns and elements not typical

of the domain of the query model, thus providing
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distracting suggestions. Considering the expected use

case for SimGESTION, the model repositories used for

learning would likely be populated with other models

from the same domain/industry/organization, so our

approach aims to emulate this as closely as possible.

6.2.2 Determining Prediction Classifiers

Hyperparameters

SimGESTION has the following hyperparameters,

– ARM has one hyperparameter, which is the amount

of antecedent reduction (percentage of antecedents

required when assessing with a consequent)

– FREQ has two hyperparameters: the weight of the

MRCB destination block types and the weight of

the neighbours. These must add up to one.

– Our ensemble classifier has two hyperparameters:

the weight given to the ARM classifier and the

weight given to the FREQ classifier. These must

add up to one.

To determine these values we employed Grid Search

[36], the standard method for optimizing hyperparam-

eters. For our FREQ and ensemble hyperparameters,

we tuned these by treating their two hyperparam-

eters as one parameter by leveraging the fact that

the second hyperparameter is simply 1.0 minus the

first hyperparameter. For example, the weight of the

neighbours in FREQ is simply 1.0 minus the weight of

the MRCB weight. To find the best hyperparameters

in each instance, we search through each value of the

parameter space, [0,1], using a step size of 0.1 and see

the impact on evaluation metric Mean Reciprocal Rank

(MRR) using 10-fold cross validation. We arrived at the
following configuration hyperparameter values,

– ARM: 0.87 antecedent reduction

– FREQ: 0.8 MRCB, 0.2 neighbours

– Ensemble: 0.44 ARM, 0.56 FREQ

6.2.3 Evaluation of Ensemble Block Suggestion

To evaluate the effectiveness of the ensemble learning

method for block suggestions, we apply SimGESTION

once for every mutable block within the evaluation set

of models. For each block, we delete the block from the

model and query SimGESTION for suggestions, with

the expected result being the deleted block appearing as

a suggestion. This method of mutation creates several

different scenarios, for example, where the missing block

may be at the beginning of a chain of blocks, the end

of the chain, or somewhere in the middle, and with

the third scenario being the most commonly occurring.

Since the development of Simulink models is often

Fig. 13: Accuracy of Suggestion Based on Number of

Suggestions Shown

nonlinear, each of these scenarios are important to

substantiate our evaluation. In particular, since often

development of a subsystem occurs to meet the needs

of both its provided inputs and required outputs, it

is often the case that subsystems are developed from

both the left and right hand sides towards the middle,

which matches the most commonly occurring scenario

in our evaluation setup. Since the number of suggestions

shown in our UI is customizable, we first needed to

determine the optimal number of blocks to display to

the user, which also formed part of our success criteria.

To establish the optimal configuration, we performed

an evaluation considering the top-N suggestions, where

N ranged from 1 to 10, and measured the prediction

accuracy. We plot this comparison in Fig. 13. Based

on these results, we determined that displaying the

top 6 suggestions provides strong accuracy without

overcrowding the engineer’s screen with suggestions.

While increasing the number of suggestions presented

to engineers marginally increases the accuracy, the

gains demonstrated are not significant enough to in-

crease the default number of suggestions. Furthermore,

should the engineer wish, they are able to increase

the number of suggestions provided to them through

the SimGESTION Configuration Wizard presented in

Section 4.2.

Based on this optimal configuration, we ran our

validation experiments with the constraint that the

deleted block must be suggested as one of the top

six suggestions. If the deleted block appears in the

top six suggestions, SimGESTION has made a correct

suggestion, and if the correct block does not appear, or

was ranked below the sixth suggestion, SimGESTION

did not provide the correct suggestion.
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We chose the single-block mutation-testing style of

evaluation as the most direct method of evaluating our

suggestions as it allowed us to automatically identify

whether the correct suggestion was made without the

need for a domain expert. Since the deleted block is,

by definition, the correct suggestion for the given query

environment, its presence among the suggested blocks

provides a clear indication of prediction correctness.

Since it is not guaranteed the correct block is suggested

in the top position, an experiment where there were

multiple mutations applied would not have been feasi-

ble. In that design, if we opted to select the top block for

insertion after each query, and the correct block was not

ranked highest, any subsequent queries may produce

suggestions further away from the original model since

an incorrect context was applied. While our approach

may be seen as an optimistic experimental design,

it provides the only way of guaranteeing correctness

beyond external validation, which is outside the scope

of this experiment.

6.2.4 Results

We evaluated each set of models independently to

ensure that the block-prediction models were trained

on models from a similar domain to provide the most

effective suggestions. For each domain, we identify

the Mean Reciprocal Rank (MRR) and Recall@6 of

suggestions produced by all three prediction models.

MRR was chosen to accurately represent the average

precision of suggestions by taking the mean of the

reciprocal of the rank of the first correct suggestion

for each query, and includes a penalty if the correct

result is not returned [72]. This is shown in Equation 1,
where Q represents the number of queries and ranki
is the position of the correct suggestion for that query.

For example, if over four suggestions the correct result

was found in positions 1, 1, 2, and 4, they would receive

reciprocal ranks of 1, 1, 1/2, and 1/4, with an MRR of

0.6875. Recall@6 is defined in Equation 2 where TP

represents the number of times the correct result is

found in the top six suggestions (a true positive) and

FN represents the times where the correct result is not

presented in the top six suggestions (a false negative).

For example, if in ten queries, the correct result is found

in the top six suggestions nine times, and one time it is

not in the top six, the Recall@6 would be 0.9.

MRR =
1

Q

Q∑
i=1

1

ranki
(1)

Recall@6 =
TP

TP + FN
(2)

Table 3: SimGESTION Suggestion MRR and Recall

Prediction
Model

Domain MRR Recall@6

Arm automotive 0.6 0.65
Arm avionics 0.53 0.85
Arm electronics 0.65 0.81
Arm energy 0.63 0.85
Arm robotics 0.59 0.7
Arm other 0.54 0.62
Arm ALL DOMAINS 0.59 0.82
Freq automotive 0.41 0.56
Freq avionics 0.4 0.83
Freq electronics 0.39 0.67
Freq energy 0.38 0.67
Freq robotics 0.47 0.7
Freq other 0.46 0.74
Freq ALL DOMAINS 0.42 0.68

Ensemble automotive 0.63 0.74
Ensemble avionics 0.63 0.91
Ensemble electronics 0.66 0.85
Ensemble energy 0.68 0.87
Ensemble robotics 0.68 0.8
Ensemble other 0.68 0.74
Ensemble ALL DOMAINS 0.66 0.85

We present the detailed results in Table 3. We

also provide MRR and recall values for each predic-

tion model averaged over all domains to indicate the

performance of the prediction models in general.

6.2.5 Discussion

Regarding our first research question, we have demon-

strated that we can provide engineers with step-wise

suggestions that are based on the analysis of a config-

urable model set. More specifically, we see that, for the
majority of domains, our accuracy is in the low 80s.

A notable outlier is our experiments with the avionics

dataset, which also impacts our total accuracy score

significantly. To elaborate, both individual prediction

models, as well as their ensemble, have low prediction

accuracy on the Avionics dataset, especially compared

to the other domains. One possible explanation of this

observation is that the Simulink models within the

Avionics dataset are not as mutually similar as models

in other data sets. As a result, for this dataset, the

prediction models are trained poorly and hence make

inaccurate predictions.

6.3 SimXAMPLE Evaluation

To evaluate our research and corresponding application,

we conducted experiments in pursuit of two avenues

of evaluation: evaluation of our visualization of the

inferred suggestions to engineers (which items are



SimIMA: A Virtual Simulink Intelligent Modeling Assistant 21

shown / filtered) consistent with how code recom-

mender systems are evaluated [26] and evaluation of

the application of those suggestions to the engineers’

interfaces. While a scenario based evaluation where a

user assembles a model independently and then queries

SimXAMPLE for suggestions may provide interesting

results, the inability to meaningfully automate this on

a large scale and the current lack of a comparable

benchmark leaves little opportunity for a systematic

evaluation of this type at this time. Instead, we focus

on the visualization and insertion of example systems

into the models under development.

6.3.1 Data Preparation

We discovered 16 of the MDL-formatted models from

the corpus were invalid, and removed them immedi-

ately. To facilitate Simone clone detection, we first

converted the SLX models to the MDL format re-

quired by Simone using Matlab’s conversion process.

Five of the SLX-formatted models failed to convert

to MDL format due to unsupported characters. After

conversion, we had a total of 925 MDL-formatted

models (557 original + 368 converted). Through further

analysis, we discovered that 259 of these models were

immutable, thus incapable of being mutated for our

experiments. This gave us a total of 666 valid, mutable,

MDL-formatted Simulink models. Of these models,

414 models were incompatible with the latest Simone

MDL grammar. In particular, we discarded the entire

“Electronics” dataset as almost all models in that set

were incompatible with Simone. Following the removal

of these models, our final test set consisted of 252

unique MDL models for our evaluation experiments.

6.3.2 Evaluation of the Visualization of Inferred

Suggestions

To validate correctness of the inferred suggestion visu-

alization, we employ mutation testing, a methodology

that has been demonstrably successful in testing ex-

periments [8], including clone-related experiments [57,

34]. Specifically, we determine if SimXAMPLE rec-

ommends the completed version of a mutated model

as one of its top suggestions. This is consistent with

recommender evaluation strategies that consider rank

and retrieval [26]. It is important to stress that we

are not conducting an evaluation of Simone’s clone

detection results as this has been accomplished in the

past in a systematic evaluation of model clone detection

tools [70]. Instead, our evaluation demonstrates our

approach’s configuration of Simone for our purposes

and our interpretation and visualization of its resulting

data. Through this evaluation we aim to illustrate

that SimXAMPLE uses the appropriate parameters

and applies the correct sorting and filtering of Simone

results to visualize optimal and appropriate model

examples in a novel and useful manner.

To conduct this experiment, we mutate each of our

test models using existing established Simulink muta-

tions [68] at random subsystems within the models.

We delete a single randomly-selected block from each

SUD to replicate an incomplete subsystem for which

SimXAMPLE can provide suggestions. We scripted

this mutation using a seeded randomization such that

the process could easily be reproduced. Multiple/com-

pound mutations would cause significant distance to

the point of no longer being a clone, and thus are

not relevant in our context. Due to the varying size

of SUDs, deleting more than a single block could

lead to significant differences, making the unmutated

model undetectable through clone detection, which is

why a single-mutation method was employed. This

application of mutation is optimal for testing the

inferred suggestion as we are concerned primarily with

retrieving the closest match from the repository, which,

by design, will be the unmutated model. Increasingly

mutated models would yield a larger difference from

the intended replacement, which would still be included

in the result, however, possibly in a lower ranked

suggestion. All our mutations and random seeds are in

our public repository for replication purposes.

We used each of the 252 mutated models as MUDs

and invoked SimXAMPLE each time with all models

in the set used as the repository of potential clones

to provide the maximum variability of models in the

repository. For SimXAMPLE to provide a suggestion

correctly and successfully, we decided that the com-

pleted subsystem from the original model must be

within the top 2 suggestions provided by SimXAMPLE,

as this means the option is visible and available without

engineers having to browse suggestions. While the ideal

result is to have the model that we mutated be the top

suggestion in each application, the similarity of some

of the subsystems in our test set allows for a variety

of suitable suggestions. For each input, we observed

the rank of the “correct” subsystem presented by

SimXAMPLE and noted whether a correct suggestion

was made. The intent of our evaluation is to ensure that

our approach interprets the clone detection results to

return and visualize the appropriate recommendations.

6.3.3 Evaluation of the Replacement

Our evaluation of the replacement focuses on the

correctness of SimXAMPLE’s insertion of the SFS into
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the SUD. We define a correct insertion as one in which

the resulting SUD must contain exactly the elements

from the SFS, with appropriate connections, and with

notifications being displayed to the engineer when

SimXAMPLE cannot make connections automatically.

To realize this evaluation, we simplified the clone

detection and suggestion portions of the process, as we

accomplished this in the first part of our evaluation

independently. We did not find a single model in our

model set which we could use directly as the Model

Under Development (MUD) to test all five possible

scenarios from Fig. 9. Therefore, we created a custom

Simulink model based on the Matlab Central model

Rotfe25x/Rotfe25x/models/sim tutorial.mdl as it re-

quired only a deletion of 1 specific block to allow us to

test each of the five possible cases. To prepare the repos-

itory set for this second experiment, we modified the

same base-model deliberately to produce two different

Simulink models. Each of these models contained clones

of the MUD at various levels of containment. Thus,

our custom MUD, together with the custom repository

allowed us to run SimXAMPLE in different locations

within the experimental model to realize the 5 replace-

ment options. We executed SimXAMPLE following the

test scenarios in Table 4 and observed the outcomes

against the expected outcomes in that same table. This

evaluation experiment served as a correctness test to

ensure proper insertion of the SFS into the SUD. While

only one input model was used, we demonstrate full

coverage of all five scenarios through its invocation

in various model locations and by responding to the

prompts in the correct way to yield the five specific

results. This method of evaluation ensures that all

possible insertion scenarios are evaluated with minimal

noise introduced through unnecessary modifications to

the source models.

6.3.4 Results

We first present the results of our validity experiments

on inferred suggestions in Table 5. For each of the

five model sets, we present the number of models

where clone detection was successful, and of those, the

number of mutated models where SimXAMPLE found

the original/unmutated corresponding model as a clone.

Furthermore, we narrow this number to indicate the

instances where the correct clone is found in position

1 or 2, indicating instances where the engineer is not

required to browse to find the correct suggestion, as it

has been visualized on the initial results page.

We present the results of our evaluation of the

insertion of the SFS through our experiment targeting

the five potential insertion scenarios in Table 4. We

compared each of the five resulting events against

the expected results to determine its success. Of the

five test scenarios, SimXAMPLE demonstrated correct

insertion behavior in all five cases. We include all

necessary data and methods necessary for replication

and verification in our public repository [1].

6.3.5 Discussion

Our second research question has been answered. We

have devised an approach that correctly provides engi-

neers with similar model examples based on analysis

of a configurable model set. When it comes to our

specific results, since the data sets are not mutually

exclusive, calculating accuracy based on their totals is

not possible. Through our evaluation of the suggestions

identified and visualized by SimXAMPLE, we demon-

strated 82.05% accuracy with our test set across all

5 domains. It is also worth calculating the accuracy

after excluding the models in the “other” set. The

reason is clone detection, and thus SimXAMPLE, is

most useful when compared to similar sets/domains.

After omitting this category, SimXAMPLE’s average

accuracy increases to 85.23%. If we consider any time

SimXAMPLE finds the correct clone, rather than in the

first or second position only, the accuracy is increased to

90.83% overall and 92.25% when excluding the “other”

category. This accuracy is not necessarily the case in

all contexts, but was employed by us for evaluation to

confirm SimXAMPLE’s ability to interpret and process

the model clone detection results to suggest the most

appropriate subsystems.

Since we based correctness on finding the orig-

inal/unmutated model as a top-two suggestion, we

were expecting 100% accuracy given a single block

deletion and the use of a 30% difference threshold

for clone detection. However, it is possible that the

block-deletion mutation causes an over mutation such

that Simone is unable to find the correct suggestion.

This, however, is a shortcoming of Simone’s sensitivity

rather than SimXAMPLE’s application, interpretation,

and visualization of the results. SimXAMPLE always

displays the correct suggestion indicated by the Simone

clone report.

In regard to performance, we observed in our ex-

periments that as the model repositories increased

in size, the time required to perform clone detection

increased as well. Thus, we recommend selecting only

the most relevant and necessary models as repositories.

Regarding the evaluation of the insertion, we designed

the experiment to demonstrate coverage of the five

possible outcomes of insertion. Since the act of insertion

takes the form of a complete copy and replacement of
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Table 4: Evaluation Tests for the 5 Insertion Cases

Scenario Expected Result
1 delete block at top level of MUD, choose suggestion

of large top level model
Entire MUD replaced with entire model of SFS

2 delete block at top level of MUD, choose suggestion
of the contained full system

Entire MUD replaced with contents of SFS

3 delete block within subsystem with 1 inport and
1 outport, choose suggestion with matching port
signature

SUD replaced with SFS, lines automatically con-
nected

4a delete block within subsystem, choose non-exact
suggestion, opt to proceed

SUD replaced with SFS, prompted to manually
adjust connections

4b delete block within subsystem, choose non-exact
suggestion, opt to abort

Replacement Aborted

Table 5: Inferred Suggestion Accuracy

Domain
Models
in set

Correct clone
presented
(Recall@6)

Clone ranked in
position 1 or 2

(Recall@2)
automotive 63 59 (93.7%) 56 (88.9%)
avionics 69 66 (95.7%) 63 (91.3%)
energy 53 49 (92.5%) 45 (84.9%)
robotics 47 41 (87.2%) 38 (80.9%)
other 101 86 (85.2%) 63 (62.4%)

the SFS into the SUD using atomic Matlab commands,

this two-step operation completes in constant time.

The success of this first time realization of an intelli-

gent model assistant using model clones is indicative of

significant positive impacts of virtual intelligent mod-

eling assistance. Through reasonably accurate sugges-

tion, visualization, and insertion of candidate subsys-

tems, our SimXAMPLE process may assist modelers in

becoming more familiar with standard design principles

and effective modeling practices by example. The well-

documented gains associated with code completion im-

plementations [54] are likely to transfer to users of mod-

eling assistants such as SimXAMPLE. Furthermore,

our realization and visualization of suggestions through

the use of model clone detection has significance on

its own. It provides a new application for existing

model clone detection tools and an accompanying novel

visualization. While our approach employs Simone due

to our earlier stated reasons, the modular nature of our

process allows for any model clone detector to be used

by tailoring Phase 1 to a respective detector.

6.4 Qualitative Evaluation via IMA Assessment Grid

Mussbacher et al. describe their initial ideas performing

assessment of intelligent modeling assistance [45]. While

they consider it only a first step, we believe it prudent

to apply their assessment grid to SimIMA as appropri-

ate. Specifically, two of the authors independently self

assessed SimIMA along that grid and came together

to reconcile final scores. We summarize our scores

in Table 6 and direct the reader to Mussbacher et

al.’s work for more details on the analysis criteria.

In regard to Quality of the IMA regarding models,

we gave SimIMA a score of 1 - Syntactic Quality

as syntactic quality is enforced and always produced

by SimXAMPLE and SimGESTION. We could not

give a score of 2 nor 3, as it depends on how the

modeler chooses both to configure the repositories and

employ the suggestions. Regarding Autonomy, SimIMA

scores Level 2 - Narrowed Set. This is because SimIMA

provides a list of multiple suggestions that have been

narrowed down. When it comes to Relevance, the

assessment grid considers accuracy as an acceptable

metric. For SimGESTION, our relevance is Level 79.

For SimXAMPLE, our relevance is 82. The Confidence

property from the grid for SimIMA is 100 as we

always (100%) show a confidence value. Our Trust level

for SimIMA is 0 as SimIMA gathers no information

about the modeler’s trust. We leave such feedback as

future work. Explainability for SimIMA is also Level

0 currently as we do not provide any insight on how

its insight was gathered. For the Quality Degree of

SimIMA, we evaluated it at a Level 2 - Safe Lookup.

This is because we consider the context and external

sources. While we do not leverage syntactic or semantic

descriptions, we do allow the engineer to tailor their

predictive models based on tradeoffs. SimIMA has a

Timeliness of Level 2 - Short running and regularly

(out of a possible level 5). SimGESTION has FREQ

complete suggestions around roughly one second, and

its retrieval time is independent of the training data

size. For ARM, it also computes suggestions around one

second, however, its retrieval time does increase with

training data size. SimXAMPLE also takes a matter

of seconds. It is not level 3 as it is not iterative, nor

level 4 as it is not less than one second in running time.
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Regarding the Quality of SimIMA’s External Sources,

we gave it Levels S1 - Project and infrastructure, A2 -

Public, U3 - Periodically updated, and C2 - Curated.

For S1, SimIMA uses the current MUD and SUD, and

past (repositories) development artifacts. It also uses

data, information, and knowledge about Simulink. We

gave ourselves Level A2 as all repositories included

with SimIMA are public, as are the ones from our

experiments. We deemed Level U3 appropriate for Sim-

IMA as we can easily update the standard repositories

that we included with SimIMA regularly. Lastly, Level

C2 seemed most appropriate since the repositories we

include with SimIMA and used in our experiments are

from a curated dataset.

6.5 Threats to Validity

6.5.1 External Threats

An external threat to validity lies in our choice of

Simulink to research and demonstrate our original

vision [67]. Our vision is language agnostic, and nothing

in the way we defined and realized our approach in this

work is strongly language specific. That is, while our

research prototype exploits certain characteristics and

features of Simulink, our general process is designed

to be applicable and generalizable to any modeling

language. While our initial research provides a proof of

concept and an implementation using Simulink models,

the concepts related to repository mining for step-

wise suggestions and clone detection for full model

completion should apply for most graphical modeling

languages. Migration to other language frameworks

may require significant implementation efforts, how-

ever, the general principles demonstrated with SimIMA

should reasonably apply in any context.

For SimXAMPLE, this is true for any language in

which Type 3 model clone detection exists. Simulink

features the most prevalent and mature Type 3 clone

detection, which is one of the reasons we chose it.

Until our general process is applied to another mod-

eling language, a threat to validity is its generality.

However, more Type 3 model clone detectors need to

be developed [69]. Similarly, our choice of Simone for

SimXAMPLE represents a threat to external validity.

While we motivate and justify choosing Simone due

to its maturity and evaluation history, it is a threat

that we did not experiment with other clone detectors

instead of Simone.

An additional external threat to validity is our se-

lection of models in our experiments. While we already

discussed our motivation for choosing this set; including

it being a large, publicly-available, and curated set;

using industrial models would reduce this threat, at the

cost of public availability and replicability. Related to

this, the use of existing models within our data sets

assumes some level of correctness or applicability of

the models, which cannot always be guaranteed. While

there is some onus on the the engineer to only use

relevant and stable models, it is possible through the

inclusion of other models, the suggestions may not be

as expected.

We also have the external threat of the experimenter

effect. Specifically, in us having members of our re-

search team doing the experiments. For the quantitative

evaluations, we had a different member of our team

chose the evaluation model set than the team members

who actually developed SimIMA. However, the actual

experiments were conducted by the same members that

created SimIMA. Experimenter effect is even more of

a concern in our qualitative evaluation where we had

two members of our team perform self assessment.

We acknowledge that originally in that discussion, and

leave third-party assessment through the assessment

grid as future work.

6.5.2 Internal Threats

Currently, the suggestions provided by SimGESTION

are at the block level, with default configurations and

values used when they are inserted. This approach

provides minimal diversity of suggestions, which leads

to potentially naive models without further user inter-

vention. While a shortcoming, this approach is quite

similar to many current code completion implemen-

tations, which provide paremeterized functional calls

with default parameters rather than specific values,

thus should not be considered a significant limitation.

While there are some exceptions through smart code

completion [35,13,61,51], our approach is analogous to

most standard code completion implementations.

Additionally, in SimGESTION our ensemble ap-

proach relies more on block presence than it does on

temporality. While block presence in a semi-automated

(suggestion-based) use case such as our is very useful,

temporal aspects can also provide important infor-

mation, especially in a language such as Simulink.

However, as this was a proof of concept of a new

approach, we leave temporaility as future work.

The selection and use of both ARM and FREQ

were based on our analysis of available techniques

combined with the data available from the model

repository. Since no formal comparison of alternative

techniques was conducted, it is possible that some other

classification/suggestion algorithms may have yielded

better performance.
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Table 6: Summary of Qualitative Assessment

Property SimIMA Score
Quality of IMA Regarding Models Level 1 - Syntactic Quality

Autonomy Level 2 - Narrowed Set
Relevance Levels 79 and 82
Confidence Level 100

Trust Level 0 – Unidentified
Explainability Level 0 – No explanation
Quality Degree Level 2 - Safe Lookup

Timeliness Level 2 – Short running and regularly

Quality of IMA Regarding External Sources

Level S1 - Project and infrastructure
Level A2 - Public

Level U3 - Periodically updated
Level C2 - Curated

Without conducting a participant evaluation with

Simulink modelers, we are unable to fully evaluate the

correctness, usefulness, and applicability of the sugges-

tions provided by SimIMA and it’s two processes from

a user perspective. While all of our internal evaluations

indicate positive results for the suggestions, further

evaluation would have strengthened these results. Un-

fortunately, the conduct of this type of user study was

found to be too difficult to design and implement, and

recruiting suitable participants was beyond our current

capabilities.

7 Related Work

We compare our work to existing research in model

assistance and completion. Research that performs the

same functions and services as SimIMA specifically
is relatively sparse in comparison to its source code

analog. There is related modeling research that has

goals that align with ours, and most importantly,

achieves those goals through means that are similar and

related. We include both in this section.

Dyck et al. outlines guidelines for how UML model

recommendation systems can be implemented based

on a survey of UML modeling tools in practice [29].

Their requirements and suggested architectures were

very helpful and inspirational in the design of SimIMA

and its integration into the Simulink.

Using XML and RDF, Segura et al. devised a meta-

model modeling language creation assistant [63]. The

MetaModelAgent tool extension in Eclipse works simi-

larly [4]. Meta-model language development differs from

our target of model creation. Mazanek et al. provide

model editors assistance by considering general graph

grammars and generating suggestions for incomplete

graphs of models [44]. Sen et al. help model editors

complete models automatically by evaluating and in-

terpreting the modeling language meta model [64].

Similarly, Steimann and Ulke use a combination of a

modeling language analysis and constraint solving to

compute suggest potential model modifications [65].

DoMoBOT also has a focus on providing recommen-

dations using natural language [60]. Specifically, it

generates a domain model using natural language pro-

cessing and attempts to automatically modify/update

the domain model accordingly. Proactive modeling is

another example that uses constraints, along with

DSML semantics, to try and predict model edits to

assist modelers [48]. Recently, Nair et al. extended

the Proactive Modeling Engine to provide recommen-

dations using Object Constraint Language constraints

and past modeling actions and history [47]. Burgueno

et al. also employ natural language processing to devise

an assistant that provides completion suggestions for

completion of domain models [20]. Kuschke et al. realize

completion suggestions based on UML activity design

patterns [42,41]. While, they use histories in the form

of model operations to derive completion suggestions,

our work finds examples for completion by structurally

similar model clones. Additionally, their suggestions

are based exclusively on predefined modeling activities

for structural UML models, while ours is based on an

analysis of similar models, not activities. All of these

related works differ from SimIMA in both the type

of analysis and knowledge base considered by their

respective assistants. SimIMA looks for suggestions

derived from existing models in repositories specified

by the engineers, such as those from the same domain,

same project/organization, and exemplars. Di Rocco

et al. present MemoRec, a similar approach to model

recommender systems that uses collaborative filtering

to recommend entities related to metamodel under con-

struction [27], which employs similar techniques related

to similarity analysis between exising models and the

current model, but applied to a different modeling envi-
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ronment. Weyssow et al. similarly approach intelligent

modeling assistance through the creation of metamodel

recommendations. They employ a similar data-driven

approach like SimIMA, however they leverage both

lexical and structural properties of the metamodels [73],

whereas SimIMA focuses on patterns of occurrence.

There is a related feature to SimXAMPLE included

in Matlab Simulink, which was released in the 2018a

version. They use proprietary clone detection to allow

Simulink developers to refactor models through library

replacement5. While both SimXAMPLE and their ap-

proach use model clone detection, their approach is

intended explicitly to refactor Simulink models that

are finished and complete. In contrast, SimXAMPLE is

tailored for engineers to create and develop/edit mod-

els that are incomplete model (fragments), a different

activity and focus. There are also differences in the

two model clone detection approaches. Their model

clone detection is private/proprietary and can detect

only Type 3 near-miss clones that have “different block

parameter values”. This results in their built-in tool not

being able to detect the relatively common [68] occur-

rence of Type 3 model clones that have/use different

types of blocks or those that have additional blocks.

While we realized and demonstrated SimXAMPLE

through a tool created specifically for Simulink, our

research is intended to be applicable to any model

type for which there exists model clone detection tech-

niques as we disseminate and generalize our work and

artifacts. Similarly to that Matlab feature, endogenous

model transformations have been used by Kappel et

al. to assist in refactoring existing completed models

only [38] through transformations. The Extremo plugin

accomplishes meta model and model reuse by creating

repositories from a variety of data sources, including

other models [62]. However, it explicitly 1) is for reuse

rather than model completion and editing, 2) does not

perform any model comparison/clone detection instead

requiring a engineer to query and navigate manually

imported data repositories, and 3) is designed to work

for tools within the Eclipse environment only. Elkamel

et al. perform XMI comparison to find similar UML

classes using metrics [32]. Its purpose is similar to

SimXAMPLE but it is limited in its ability to find

related classes in that it is unable to detect many of the

Type 3 clones that SimXAMPLE can as they focus on

name similarity of classes, attributes, and operations.

SimXAMPLE’s use of Type 3 clone detection allows

for providing identical, renamed (ignoring names), and

near-miss (different structure and missing/added ele-

ments) suggestions.

5 https://www.mathworks.com/help/slcheck/ug/identify-
subsystem-clones-and-replace-them-with-library-blocks.html

Barriaga et al. described repairing software models

using reinforcement learning [15]. Their work differs

from ours both in context and methods. In contrast to

our research, they focus specifically on repairing models

that are known to be broken with errors that have

a concrete list of possible actions. Ours is intended

to be used on incomplete model fragments and can

also be used on complete models, irrespective of their

“brokenness”. Their method is centered on rewards

associated with actions, which is different than finding

similar examples or evaluating existing artifacts.

8 Conclusion

In this paper, we describe our research in determining

the plausibility of providing software modeling assis-

tance by using machine learning and model clone de-

tection on past artifacts. To that end, we answered two

subquestions targeted to different forms of assistance:

providing step-wise (element-level) suggestions and pro-

viding similar example models as suggestions. These

forms of assistance correspond to two components of

our larger SimIMA assistant: SimGESTION and SimX-

AMPLE. SimGESTION employed ensemble learning

by combining association rule mining and frequency

information. SimXAMPLE configured, executed, and

visualized model clone detection and (sub)system re-

placement.

To evaluate all of SimIMA, we used a large, publicly

available, independently validated, and curated data

set to facilitate reproduction and reproducibility. We

employed k-cross fold validation on SimGESTION to

tune its hyperparameters and also evaluate its results.

Doing so allowed us to derive the optimal weight

parameters for its various classifiers and its accuracy.

In our experiments on various domains, SimGESTION

ended up with a total accuracy of around 79%. For

SimXAMPLE, we were able to provide the correct/ac-

curate suggestions roughly 82% of the time. While our

overall intent was to establish the feasibility model

assistants employing machine learning and model clone

detection, we believe these accuracy results are very

encouraging.

8.1 Future Work

As with most recommender systems, there is always

ample opportunity to improve the suggestions provided.

One planned enhancement relates to the current short-

coming where SimGESTION provides block sugges-

tions without customizing the block’s parameters. This

functionality, while significant, was specifically omitted
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from our initial realization due to the lack of sufficient

relevant data within the dataset. Further, our lack of

expertise in Simulink modeling at an industry level

prevented us from providing meaningful parameter sug-

gestions. We aim to work with professionals proficient in

Simulink to better understand the types of parameters

and how best to make suggestions for these values, since

the methods currently employed for SimGESTION that

rely solely on repository data are not likely to produce

relevant suggestions. Through additional analysis of

models and discussions with domain experts, it is po-

tentially possible for SimGESTION to suggest different

values for blocks, in addition to different block types.

For example, rather than just suggesting a Constant

block, SimGESTION could suggest a Constant block

with a value of 10, or provide possible conditions for an

if block.

From an evaluation perspective, there are a number

of avenues we are considering for future work. Now

that we have demonstrated the plausibility of these

assistants and developed working prototypes, we want

to connect and work with industry to perform user

evaluations. To better demonstrate the robustness and

effectiveness of SimIMA it would be beneficial to vali-

date using industrial production models using Simulink

practitioners in a robust user study to elicit feedback

on the correctness of the suggestions and insertions. By

having SimIMA applied in a more real-world setting, we

would better be able to help foster use and promotion.

This is not an indictment of our current evaluation.

Rather, application of SimIMA is very context depen-

dent and having industrial use cases would expand

the context of our evaluation. Additionally, we want

to recruit third party researchers, possibility from the

original RF-IMA assessment grid paper, to conduct an

independent qualitative evaluation.

As with most research, there is potential for user

interface (UI) enhancements. Careful consideration was

part of our SimIMA design process, as was adhering to

established guidelines for creating model recommenda-

tion systems [30]. However, conducting a study with

Simulink practitioners to solicit feedback on the UI

design and usability would be beneficial. We would be

able to consider alternative UI designs and determine

which features contribute the most to the usability and

design. Even through our qualitative assessment, we

identified areas of potential enhancements such as more

explanations and building trust through transparency.

Finally, as we propose this work as generalizable

to other modeling environments and languages, it will

be necessary to explore the application of our machine

learning and clone detection based approaches with

other modeling languages to better support this claim.

Acknowledgements This material is based upon work
supported by the National Science Foundation under Grant
No. 1849632.

References

1. Adhikari, B., Rapos, E.J., Stephan, M.: Initial Evaluation
Data for SimIMA: A Virtual Simulink Intelligent Model-
ing Assistant (2021). DOI 10.5281/zenodo.5123565. URL
https://doi.org/10.5281/zenodo.5123564

2. Adhikari, B., Rapos, E.J., Stephan, M.: Simulink Intel-
ligent Modeling Assistant (SimIMA) (2021). DOI 10.
5281/zenodo.5123570. URL https://doi.org/10.5281/

zenodo.5123568

3. Adhikari, B., Rapos, E.J., Stephan, M.: Simulink model
transformation for backwards version compatibility. In:
2021 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Compan-
ion (MODELS-C), pp. 427–436 (2021). DOI 10.1109/
MODELS-C53483.2021.00066

4. Adocus AB: MetaModelAgent Concept. http://www.

metamodelagent.com/concept.html. Accessed: 2021-04-
01
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61. Schäfer, M., Sridharan, M., Dolby, J., Tip, F.: Effec-
tive smart completion for javascript. Technical Report
RC25359 (2013)

62. Segura, A.M., de Lara, J.: Extremo: An eclipse
plugin for modelling and meta-modelling assistance.
Science of Computer Programming 180, 71 – 80
(2019). DOI https://doi.org/10.1016/j.scico.2019.05.
003. URL http://www.sciencedirect.com/science/

article/pii/S0167642319300644
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