
SuMo: A Supportive Modeling Language
Environment for Guided Model Transformations

Nick DiGennaro, Matthew Stephan, and Eric J. Rapos
Computer Science & Software Engineering

Miami University
Oxford, Ohio, USA

{digennnj,stephamd,rapose}@miamioh.edu

Abstract—Adoption of model-driven software engineering is
limited by the steep mastery curve of leading approaches and
their associated technologies. To help combat this, we research
and develop a supportive modeling language and environment,
SuMo, that ensures modelers are able to produce valid models,
model transformations, and generated artifacts in their devel-
opment projects. SuMo includes a custom modeling language
definition, a structure- and semantic-enforcing live modeling
environment to support model creation, a transparent code
generation engine that includes model element mapping to
better integrate modeling and programming languages, and
a guided model-to-model transformation engine to help users
through the complex task of transformation specification. Each
of these guided approaches to model design and transformation
development are included in a single, web-based, environment to
avoid complex configurations, which often cause issues for novice
developers. We conduct a systematic evaluation that assesses
SuMo’s code generation and model-to-model transformation
processes independently. We conclude that both types of model
transformations developed using SuMo produce valid and correct
outputs in all cases.

Index Terms—modeling languages, live modeling, language
customization, model transformations, code generation, struc-
tural modeling, modeling tools, supportive modeling

I. INTRODUCTION

Model-driven software engineering (MDSE) has seen a
continual increase in usage in industry [1], educational con-
texts [2], and research [3]. This sparks a need for appropriate
processes to ensure the development and maintenance of valid
modeling artifacts. Further, model transformations are some of
the more complex modeling concepts, thus a suitable modeling
language and corresponding environment would prove useful
in the creation and editing of models to ensure valid model
transformations can occur.

Model transformation typically takes one of two forms [4].
Model-to-Text (M2T) Transformations allow for conversion
to some textual representation of the graphical model. The
most basic form of M2T transformation comes in model
serialization, where the models are converted to textual format
for file storage; however, this type of transformation is not
the most useful application. In order to leverage M2T trans-
formations fully, developers aim to leverage a specific subset
known as Code Generation. Through mappings from model
elements to source code grammar elements, modeling tools
are able to transform input models to executable source code

in a given target language [5]. In contrast, Model-to-Model
(M2M) Transformations allow the conversion from one type
of model to another, or from one version to another. In both
transformation types, the inputs and outputs must conform to a
given specification; in this case their respective meta-models.
In M2M transformations, the mappings between elements
are far more variable and require a user to specify their
own mapping, typically using a transformation specification
language, such as ATL [6]. Regardless of which type of
transformation is applied, the notion of conformance is central
to model transformations. Any input model must conform to a
specification in order to be a valid input to the transformation,
and any output produced by the transformation must conform
to its target definition to be useful in the resulting domain.
Supporting applications of model transformation must ensure
this conformance on both sides of the transformation.

A. Motivation

Existing implementations of model transformation tools
leave much of the transformation specification process up to
the user with minimal guidance and feedback. This open form
specification process can lead to malformed transformation
rules that result in invalid transformations or non-conforming
instance models. Due to the complex conceptual nature of
model transformations, this inability to ensure valid trans-
formations may be a detriment to the widespread adoption
of MDSE techniques. Through a lack of proper guidance
and live modeling feedback, novice users may be unaware
of the issues in their transformations, and this could lead to
reinforcement of improper modeling practices. Issues with tool
implementations have contributed to student frustration in the
adoption of MDSE techniques [7]. To address such issues and
facilitate continued adoption and growth of MDSE, we devise
a guided supportive modeling language and accompanying
environment that aim to provide novice and experienced mod-
elers with the guidance and feedback to produce accurate and
valid software systems through the use of MDSE techniques,
specifically structural modeling, code generation, and model-
to-model transformations. This aligns with the vision proposed
in our past work in our proposal and justification for an
Instructional Modeling Language [8] and techniques aimed at
Agile MDSE [9].



B. Contributions

In researching and developing our guided and supportive
modeling process, specifically relating to structural model
transformations, we aim to answer two research questions.
RQ1: Does the provision of a supportive live-modeling envi-
ronment, coupled with a transparent code generation engine,
ensure consistent and valid outputs? RQ2: Does the inclusion
of responsive guidance and feedback allow for consistent
generation of valid model-to-model transformations?

To this end, we develop SuMo, our process for Supportive
Modeling, which makes the following contributions,

• a custom UML variant, along with a supportive web-
based live-modeling environment, which enables the cre-
ation of structural models for use in transformations;

• a transparent code generation process that clearly maps
model artifacts to resulting code, facilitating a stronger
integration of models and source code;

• a guided model-to-model transformation engine that di-
rects users through transformation processes;

• a demonstration of the effectiveness of the above contri-
butions through a systematic evaluation.

A summary of closely related works is presented in Sec-
tion II. We present an overview of the browser-based modeling
environment that implements SuMo in Section III, followed
by the specific details of the SuMo language and process in
Section IV. SuMo was evaluated using the process outlined
in Section V. Finally, we conclude this paper with some
discussions of the project and its future in Section VI.

II. RELATED WORK

Various other modeling languages and tools exist with
similar functionality (e.g., Sirius/Acceleo, Modelio, Rational
Software Architect); however, the common difference between
them and SuMo is their lack of guidance and support, which
is provided through our process and language design. Some of
the more closely related works are presented in this section.

While the Eclipse Modeling Framework (EMF) [10] pro-
vides functionality for meta-model creation, the tool itself has
a steep learning curve for novice users [7] and has a core
functionality that lacks many of the desired features of an end-
to-end modeling tool. Specifically, to leverage instance model
creation, users must also install and become familiar with the
Graphical Modeling Project (GMP)1 to be able to edit their
instances graphically. Our SuMo process and corresponding
realization include both meta-modeling and instance modeling
in one web-based environment. While the Eclipse Modeling
Project does offer a number of options for model transfor-
mation, such as ATL [6], Epsilon [11], JET [12], and several
others, they also involve incorporating additional tools into
the framework with added dependencies, learning curves, and
version issues. SuMo incorporates code generation and model
transformations into the same environment as its structural
model editor, so users can focus on producing consistent
models and transformations without needing to context switch

1https://www.eclipse.org/modeling/gmp/

between various complex tools. Our customized UML variant
that we employ as SuMo’s modeling language allows users to
master the principle concepts rather than needing to understand
the full complexity of these other implementations. Lastly, our
web-based implementation of SuMo provides a level of access
and live-modeling support not present in EMF, allowing us to
make advances in the state-of-the art for modeling languages
and environments.

Another significant difference from existing model trans-
formation tools is that our solution implements model-to-
model transformations using a guided approach that does not
require the user to learn a new specification language, such
as ATL [6]. Instead our live editor provides drop-downs and
simple text entry options to ensure they are able to consistently
produce well-formed transformations that always result in
valid transformed model outputs.

Umple [13]–[15] is a web-based framework for model-
driven development of object-oriented systems that allows
users to specify their system design using UML class diagrams
and ultimately generate Java code for use in production
systems. However, Umple does not provide the ability to create
instance models based on the users’ meta-models, nor does it
feature any model-to-model transformation functionality. Both
of these are core features and affordances of SuMo. Umple
also involves an intermediate textual representation of the class
diagrams, which requires users to become familiar with an
additional syntax, and distracts from the abstraction provided
by graphically modeling systems. In contrast, SuMo uses only
a graphical modeling language, thus removing the need to
learn an additional language syntax.

We originally proposed a vision for an instructional model-
ing language with similar motivation [8]. However, SuMo is
more general purpose and instead aims to provide users with
consistent guidance and feedback to produce valid models and
generated artifacts in every instance. We draw inspiration from
their intended use of a constrained UML subset in order to
focus on the supportive modeling aspects rather than technical
robustness.

III. BROWSER-BASED LIVE-MODELING ENVIRONMENT

In this section, we describe the technical context of SuMo,
which enables the provision of guidance and support. Specif-
ically, the browser-based live-modeling environment that we
develop our research goals within. We chose a browser-based
application to remove technical and installation barriers to its
use. We aimed to develop a customized modeling environment
to provide users support during the development of their mod-
els and model-transformations. We discuss our research and
main contributions in the form of our supportive approaches
in Section IV.

While the environment itself is not our main contribution, it
is necessary in the development of our model transformation
processes. To leverage the power of model transformations,
a user must first be able to produce models of various types
as inputs to their transformations. Further, the supportive and
guided aspects that we build into the modeling environment



Fig. 1. Language definition meta-model for Structural Models - a customiza-
tion of UML Class Diagrams

form the basis of our supportive web-based process contribu-
tion.

The remainder of this section establishes the context and
environment that we developed to enable our guided transfor-
mation processes. Specifically, we present the structural live
model editor, a functional integrated development environment
(IDE) to interact with the generated code, and a model
transformation specification application.

A. Structural Live Model Editor

The first aspect of the environment enables users to develop
models that can be leveraged in various types of applications
while also being conducive to both educational and Agile
contexts. We opted to initially focus on structural models,
similar to those represented as Class Diagrams in the Unified
Modeling Language (UML), as they are more commonly
used in model transformations, based on the current set of
applications available. Instead of using standard UML, we
developed a simplified customization of UML class diagrams
to focus on modeling concepts rather than full expressabil-
ity. Specifically, we opted to include only classes (standard
or abstract), attributes based on four primitive data types
(integer, double, string, and boolean), and three types of
relations between classes (inheritance, reference/association,
and composition). We chose a custom variant over a UML
profile to avoid unnecessary complexity for users. We show
our language definition meta-model, defined using our own
editor, in Figure 1. Since one of the main aspects of model
transformations relates to the conformance relationship be-
tween meta-models and their instances, we ensure that SuMo
is capable of producing meta-models and conforming instance
models. This essentially required the creation of two similar,
but distinct, model editors.

To leverage the successes of existing approaches, it is
important that we present users with elements found in lead-
ing model editors such as the Eclipse Modeling Framework
(EMF). Specifically, we included a modeling pane, a dynamic

Fig. 2. Meta-model editor showing the modeling pane, palette, and properties
table

palette, and a properties table. For instance model editing, we
additionally included a meta-model conformance indicator to
provide dynamic feedback to the user.

Users are able to develop their own meta-model based on
our UML customization, and opt to create instance models that
conform to their own model by switching to the instance model
editor. In doing so, the dynamic palette displays classes and
relations from their user-defined meta-model. This is a feature
that is not present in existing model editors, at least without
substantial additional effort on the part of the user, such as the
UI definitions in GMP.

To research and realize these editors, we used the open
source JointJS2 framework. By leveraging its customizable
element definitions, we created a graphical model editor that
represented our specific UML customization. We present an
example of the meta-model editor in Figure 2. This example
shows two classes in inheritance relations with an abstract
class as a means of showing classes, attributes, and relations
having been added to the model pane.

Our live-modeling environment includes some quality-of-
life features that enable robust modeling in an end-to-end
fashion. Specifically, we offer the opportunity to import/export
models in an XML format for artifact sharing, produce images
of models, save and open models on server-based accounts,
and several other familiar features common to existing frame-
works. From the structural modeling page, users are able to
generate corresponding source code automatically, which is
displayed to them in our web-based IDE.

B. Integrated Development Environment

While there are several web-based IDEs for editing and
executing source code, it is crucial that our modeling environ-
ment incorporates our own implementation to provide users
maximal benefit from code generation. When users generate
source code from their structural models, we are able to imme-
diately display their generated code in a fully functional IDE.
Because each model typically contains many class objects, the
resulting generated code contains an equal number of source
code files. The main function of the IDE with respect to
SuMo’s guided model transformations is its ability to facilitate
immediate interaction with the generated code, corresponding

2https://www.jointjs.com/opensource



Fig. 3. An example of generated code shown the custom IDE (cropped)

to the model elements. We discuss this link between models
and the generated code further in Section IV-B.

We realized our IDE through Ace.js3, an existing framework
for JavaScript-based code editing that includes a set of stan-
dard IDE features. We enable users to build and compile their
code by running the compiler in a Docker instance. Similar to
the model editor, we were determined to include the standard
features and components found in leading IDEs. Specifically,
we included a central text editor allowing multiple tabs, a
console for compilation and execution, and a project explorer
to view saved code projects. We present an example of the
IDE in Figure 3, which illustrates the code generated from the
example model in Figure 2.

C. Model Transformation Specification Interface

The final aspect of our supportive modeling process is the
guided model transformation specifications. Correspondingly,
our environment needs to support our goal of exploiting a
users’ familiarity of basic concepts. Thus, it is important
that our interface represents the foundational knowledge base
of model transformations. As such, we mirrored a widely-
accepted overview diagram for explaining model transforma-
tions based on a leading text on MDSE [2] and others [4] to
inspire our layout and design. We present our model trans-
formation interface in Figure 4. In this example, the user has
selected their source meta-model, which is shown to the user
during the specification process for a quick lookup of model
contents. This figure shows our realization of the overview
diagram as an interactive specification interface where users
can specify source and target meta-models, choose their input
instances, specify mapping rules, trigger the transformation,
and export the resulting transformed models. While the use
of this interface has potential benefits in educational contexts,
it offers functionality suitable for robust implementations as
well.

Beyond the layout of the interface, the tightly guided
approach to the specification of transformation rules was
crucial in the design of our approach. Unlike other model
transformation approaches, which typically leverage custom
transformation languages, our approach uses a specification
wizard to guide users through the process by having them pro-
vide mappings, values, and other specifications through modals

3https://ace.c9.io/

Fig. 4. An example of the model transformation specification environment
with a source meta-model selected

and popups. By removing the free-form inputs, we remove the
possible introduction of malformed specifications that could
otherwise occur. We discuss this further in Section IV-C.

IV. SUMO - SUPPORTED MODELING AND
TRANSFORMATIONS

To effectively guide users through the various applications
of model transformation, we provide support in three distinct
ways. First, by providing consistent feedback during the design
of their meta- and instance models, we ensure that the inputs to
any model transformation are both well formed and adhere to
standard modeling practices. Further, we assure they meet the
criteria for code generation. Second, by enabling a transparent
and consistent code generation process, not only are we
ensuring the user is consistently provided valid and functional
generated code, we provide additional features to support the
correspondence between model and code artifacts. Finally,
through our guided transformation specification engine, we
ensure that any model transformations specified by the user
produce valid transformations that will always conform to the
target meta-model. We discuss each of these goals herein.

A. Consistent Feedback for Supportive Model Design

To reap the benefits and power of model transformations,
a user must first be able to produce valid and meaningful
models, both at the meta-model and instance-model levels. To
support this prerequisite, SuMo provides support in our live-
modeling environment through a number of specific facets, all
of which rely on our custom modeling language included in
the SuMo environment. In the abstract sense, this takes the
form of consistent live feedback and preventing “breaking”
changes. We now discuss the specific support subprocesses
within SuMo: type checking, relation cycle prevention, dy-
namic conformance checking, detailed error messages, and
stable state assurance.

To ensure the validity of the data represented by the models,
we must ensure that any values entered by the user satisfy
all modeling-language constraints. This includes basic type
checking to ensure the values are of the correct data type,
bounds checking to ensure lower bounds are always less than
or equal to the upper bound, preventing multiple inheritance,
and other basic error checking. This, seemingly, simple guid-
ance goes a long way to ensure that any model produced



contains only valid values. If an invalid value is entered by a
user in the properties table at any point, our process includes
providing a detailed error message describing the issue and
reverting the model to its most recent stable state.

The next type of guidance relates to the dynamic checking
of modeling concepts pertaining to cycles of relations. There
are cases where adding a relation between two classes will
result in a cycle (such as a Class inheriting from itself). Rather
than allowing the addition of the relation and producing an
error when processing the model, SuMo informs the user
immediately through an error message and reverts the model
back to a stable state.

Another sub process within SuMo is providing immediate
feedback to the user when they are creating instance models
that conform to a provided meta-model that ensures the
validity of all model elements. The first feature that supports
this goal is the dynamic generation of the palette. Since the
palette contains the Classes and Relations specified in the
meta-model, our process allows the user to add only valid
elements to their instance model. The second feature is a
dynamic conformance checker that reports any issues of non-
conformance to the user in the meta-model conformance pane.
Examples of non-conformance include the absence of required
attribute values or relations and the surplus/deficit of relations
outside of specified bounds. As with the other features, we
constructed the messages to be as detailed as possible to
best guide the user on how to correct the issues of non-
conformance.

Through each of these model guidance features, SuMo pri-
oritizes ensuring users are provided with clear error messages
that provide sufficient detail to correct the issues. One example
of this includes identifying when invalid values, based on data
type, are entered for attributes. Further, our process does not
allow for the creation of models in an unstable state. Each
time a breaking change is introduced, in addition to providing
the detailed message, our process includes reverting back to
the most recent stable state. Due to the immediate nature of
the error checking, only single-step atomic changes will be
rolled back, immediately following the message describing the
error. The only exception is in the case of meta-model non-
conformance, which does not equate to an unstable model.
In this case, SuMo allows the user to rectify these issues
on their own. However, an instance model with conformance
issues cannot be used to generate code. Thus, SuMo requires
an instance model to be in conformance with its meta-model
before proceeding with code generation.

B. M2T: Transparent Code Generation

Code generation for meta-models and instance models must
be handled in different manners, as they conceptually represent
different levels of abstraction. As meta-models represent all
possible instances within a domain, this equates to defining the
structural data representations for each of the various classes.
However, instance models represent a single representation of
one instance, equating to providing specific values to each of
the classes’ attributes. Independent of the model type, the code

generation process ensures that the user is provided with a sin-
gle source code project with appropriately named directories
that match the model name, further ensuring correspondence
between the model and generated code. We present SuMo’s
general approach in the form of generation of Java code for
meta-models and instance models, followed by our intentional
aspects of the process that enable a transparent code generation
experience. It was necessary to implement our own custom
code generation engine due to the absence of the transparency
features desired for SuMo in existing environments.

Generating the necessary code for a meta-model means
creating an equivalent Java class for each class in the user-
defined meta-model. To this end, our process entails producing
independent .java files for each class, complete with all of their
respective attributes and outbound relations. To achieve this,
our process involves the code generation engine traversing the
model, class by class, and creating a textual representation
of each class following a series of static mapping rules. The
general process for constructing each class is as follows,

1) add the class definition, including any abstract or ex-
tends notations

2) add attribute definitions for each attribute in the model
class, based on the properties

3) add two constructors for the class: one default con-
structor with no parameters and one constructor with
parameters for all attributes

4) add a toString method for the class, responsible for
printing the class details in a readable format

5) add getters and setters for each of the attributes in the
class

This general process ensures that every element from the
user-defined meta-model is present in the generated code.
The guaranteed one-to-one mapping enables the generalization
of this process to any given meta-model, ensuring that our
process is applicable in all cases. A similar process is applied
by EMF.

Since the instance relies on the definitions provided by the
meta-model that it conforms to, to generate instance model
code our code generation process and engine must first ensure
that all class definitions from the meta-model have been
generated as we described. Once complete, SuMo traverses
the input model to create a final .java file that houses the
instantiation of the model elements. The general process for
generating instance model code is as follows,

1) create a class definition based on the instance model’s
name

2) add a main method to the class to be used to instantiate
all of the model’s objects

3) add a call to the default constructor for each class present
in the instance model, providing a unique identifier for
each class using an incremental counter approach

4) for each newly constructed instance, use the generated
setter methods to instantiate the object with the attribute
values provided in the instance model

5) after all classes are instantiated with the attribute values,



Fig. 5. Example class with corresponding generated ASCII-art representation

add the relations from the instance model by calling the
appropriate setter method for the relation’s source object
and assigning the relation’s destination object

As with our process for meta-model code generation, this
iterative and exhaustive method for generating instance model
code ensures that all elements present in the input model are
directly mapped to the resulting code. This process is unique
to our code generation process as other approaches do not
employ both types of code generation in a single facility.

To provide modelers with an obvious equivalency between
their graphical model and the generated Java code, thus
furthering and supporting the integration of the models and
source code, it is beneficial for our process to include a code
generator that adds a header comment to every source code file
that serves as a visual link back to the source model. To this
end, we constructed an ASCII-art generator to build the class
object as it appears in the model. One nuance is, rather than
using the iconography for cardinality, we represent the upper
and lower bounds as a range in the comment. An example of
this mapping between a class from the model editor and the
generated ASCII art file header is in Figure 5.

In addition to the header comments, SuMo’s code generation
incorporates detailed documentation to link the code back to
the original model in several other ways. For example, for
each attribute, we generate comments that include its upper
and lower bounds specified by the model, as these elements
are not directly represented in the generated executable code.
To aid in the readability and transparency of instance model
generation, our engine sections the code into 3 main blocks
based on the high-level tasks it achieves. Each block of code is
preceded with a comment explaining the purpose of the code
that follows. The three block comments are as follows,

• // Instantiate model objects.
• // Set object attributes.
• // Implement relations between model objects.
Within each of the blocks, we put spaces between each

object when handling its attributes and relations to further
support the transparency and readability of the generated code.
Essentially, our goal is that as little information as possible
is lost in the conversion from the graphical model to the
generated code, and that each element in the generated code
can be easily traced back to the original source model.

C. M2M: Guided Model Transformations

Arguably, model-to-model transformations are one of the
more complex tasks associated with MDSE. This is typically
compounded by novices having to learn a new syntax to
specify transformation rules, which can lead to malformed

Fig. 6. An example class mapping with fixed LHS and drop-down RHS

rules and invalid transformations. SuMo’s solution to an ef-
fective model transformation specification is to take a guided
approach, providing the user with as much structure and
predefined content as possible. In addition to our UI based on
the overview diagrams, SuMo also guides the user through the
model transformation specification by highlighting remaining
required tasks in red and completed tasks in green. We
showcase this in Figure 4. This complements the real power of
our transformation specification process, the rule specification
mechanisms.

Rather than an open-rule specification platform, SuMo
guides the user through the creation of necessary rules to
produce a valid mapping. This is done by pre-populating the
left-hand side (LHS) of applicable rules with the elements of
the source meta-model such that the user is informed of which
elements must be mapped. Rather than leaving the right-hand
side (RHS) of the rule completely open, our SuMo process
offers the user a choice via a drop-down of all valid options
from the target meta-model. As such, it is simply a matter
of choosing the intended mapping target from a list. This
includes the option to map to no element in the target meta-
model, should the transformation dictate removing elements
entirely. Currently, SuMo does not support composing multiple
elements from the LHS to a single element on the RHS,
but this is something we consider for future iterations. An
example mapping specification for a class mapping is shown
in Figure 6. Here we see the LHS fixed with the current
model element from the source meta-model (Professor) and
a prepopulated drop-down with all allowable mappings from
the the target meta-model on the RHS. The same approach is
also used for attribute and relation mappings within already
mapped class pairs.

To facilitate the expressiveness required to produce rel-
evant and meaningful transformations, SuMo allows for
more complex mappings than the simple 1-to-1 mappings
we have described thus far. Thus, our transformation en-
gine provides options for complex conditional mappings for
each element. Rather than allow only simple rules such
as Professor maps to Professor, users can add conditions
such as if Professor.ID.contains("_") then Professor

maps to none, else Professor maps to Professor, which
would remove all professors with an ID containing an un-
derscore and ignoring those without. Instead of having the
user learn the syntax of these rules, SuMo’s engine provides
drop-downs and text boxes to streamline the process. The



Fig. 7. An example conditional mapping rule shown in the SuMo wizard

engine allows for additional else if clauses. This example
rule describing the removal of some professor objects, created
using the editor, is in Figure 7. The use of a wizard-based
approach rather than employing existing constraint languages,
such as OCL [16], means modelers do not need to worry about
mastering yet another language, while still providing similar
expressability.

Another feature necessary for robust model transformation
is the ability to assign values to attributes that cannot be
derived from attributes in the source models, but rather are
based on some set of application rules. Consider an example
where the source meta-model represents a person’s child as
one of two classes, Son or Daughter, but the goal of the
target meta-model is to merge these both to a single Child

class with an attribute that indicates their gender. To do this,
it would require a rule of the form Son maps to Child AND

Child.gender="male" and an equivalent rule for the other
class. Our engine continues the application of SuMo’s guided
approach by providing the option to assign values, which are
checked for valid assignments based on type, using input text
boxes.

The final important feature of SuMo’s model transformation
process and our corresponding engine that supports effective
model transformation is the ability to ensure the creation
of valid output models through enforced target meta-model
conformance. That is, before producing an output model,
SuMo applies the dynamic conformance checking algorithms
provided by the instance model editor to ensure the resulting
model conforms to the target meta-model. If there are no
conformance issues, the model is generated and exported by
the engine for use. However, if conformance errors are present,
our intelligent approach determines the specific issues and
applies solutions to ensure conformance. This involves the
application of any combination of three adjustments to the
model, presented below. Each adjustment is known to be
correct based on the language definitions of the structural
models, and the built-in conformance checking algorithm.

Attribute Instantiation: If, through the application of rules
and processing of the input model, there are attributes in
the resulting model that are not instantiated and the target
meta-model requires a value assignment, our transformation
engine must determine the appropriate instance value by either

applying the default value from the meta-model or the type-
default for the attribute type.

Relation and Object Addition: If through the application
of rules and processing of the input model there are classes
with fewer outbound relations than allowed by the target meta-
model, our transformation engine instantiates default instances
of the required classes to meet the constraint requirement and
adds relations between the source and new targets.

Relation Removal: Inversely, if through the application of
rules and processing of the input model there are classes with
more outbound relations than allowed by the target meta-
model, our transformation must remove some relations to bring
it into conformance. Since it is not desirable to delete the
class elements themselves as the user may opt for different
selections, our approach removes the requisite number of
relations using a simple lexicographic-based heuristic.

Following SuMo’s application of the above corrections
across the full model, conformance checking occurs again to
ensure the model now conforms to the target meta-model. If
it conforms, the transformation is complete and the result is
generated for the user. If there are still conformance issues at
this point, which is unlikely given the strict guidance provided,
the user is notified that the specification is invalid, and no
output is produced. The SuMo process opts to produce no
output over an invalid model as the latter would be more of
an issue should the user continue using the resulting model
within their software project.

V. EVALUATION

To evaluate our two research questions, we aimed to eval-
uate the code generation and model transformation processes
separately using independent experiments. Evaluation of the
model-editor environment and guided support process was
evaluated implicitly through its use in producing the artifacts
used in the other two evaluation experiments. That is, by
using the modeling environment to develop meta-models and
instance models for use in code generation and model transfor-
mation, we were able to provide extensive internal testing of
the tool that allowed for the discovery and correction of bugs
present in the process. While it may be desirable to perform
user testing in the future, we were more concerned with the
evaluation of our research aspects rather than the tooling itself.
Further, it allowed us to explicitly focus on answering our two
research questions, which focus explicitly on the validity and
correctness of the code generation and model transformation
processes. We make all artifacts from our evaluation available
on our public repository4.

A. Code Generation

To effectively test the validity and correctness of the code
generation process, thus answering RQ1, we opted for a path-
coverage based approach. For each element in the language
definition in Figure 1, we developed a test case to evaluate
that specific portion of the code generator. To this end, we

4https://doi.org/10.5281/zenodo.5227220



enumerated all elements, along with their valid permutations
to ensure path coverage for our code generation processes. By
leveraging this path coverage criteria and testing each model
element, independently of one another to reduce noise, we
demonstrate the complete functional coverage of the SuMo
code generation process. Through this process we identified
the 51 cases in Table I.

For each of the functionalities, we created an input meta-
model and a conforming instance model containing the ele-
ments required to demonstrate that functionality. To reduce
noise, we built up tests incrementally when possible, first
testing smaller portions, then using those models as the basis
for functionality that builds upon the successful test cases.
For example, we evaluated attributes without assigning values
before evaluating the assignment of values. To minimize
the number of tests required, we evaluated related features
together in combined test models. This resulted in 13 explicit
test models to evaluate the code generation process. Finally,
we developed a single complex model that demonstrates the
composition of the functionalities to evaluate code generation
for a more robust and realistic model.

For each test model, we chose to evaluate the generated
code on four metrics of success. The first metric pertains to
the ability to generate code from the model. Since SuMo’s
code generation engine is designed to not generate code from
a model that would produce invalid code, if any code is
generated, this is the first marker of success. The second metric
of evaluation relates to the correctness of the ASCII art in the
source files. For each test model, we manually inspected each
of the the 36 generated file headers. If the header contained an
ASCII art header, and it accurately and correctly represented
the class, that file was correct. A test was successful in
this criterion if all files had correct representations in their
generated file headers. The third metric measured the validity
of the code generated by the engine. To evaluate this, we
leveraged the Java compiler. If the code was compiled without
error, we deemed this code to be valid, and this was the success
marker for the test case as a whole. The final success criterion
for a test case was whether the actual system output matched
the expected outputs. Using an automated comparison of the
expected and actual outputs, we obtained the final marker for
success for each test case. To summarize, for a test case to
pass, it must: a) generate source code, b) have valid ASCII
art in all source code files, c) compile using the Java compiler
with no errors, and d) have the actual and expected outputs
match exactly. We represent these four criteria in the columns
of Table I as they form the basis of our evaluation results.

We created expected outputs manually by producing text
files that represented the console output that should result
when executing the compiled code. In the case of this experi-
ment, we augmented the code generator to add print statements
at the end of the main methods so that the instances’ objects
would be printed to the console using their toString methods.
This printing of object instances formed the basis of the
expected outputs. To perform the automated comparison of
expected and actual outputs, we used a Bash script to compile

and run the generated code and redirect the console output
to a file, which we stored for comparison. After executing all
the code, we automatically compared the expected and actual
outputs and recorded the results.

B. Model Transformations

Similar to the code generation approach, to effectively
evaluate RQ2 we aim to leverage a coverage approach to
model transformations. However, instead of covering model
elements, this evaluation covers all possible mapping combina-
tions for each of the model element types. This yields 4 Class
Level Tests, 5 Attribute Level Tests, and 7 Relation Level
Tests. Additionally, we aimed to cover complex mappings
through an additional 7 Complex Mapping Level Tests to
ensure adequate handling of these more complex mapping
rules. Finally, it was necessary to test the ensured conformance
of our model transformation engine by providing scenarios
that would intentionally produce invalid output models, and
demonstrate that SuMo ensures they conform to the meta-
model through application of SuMo’s methods/subprocesses.
This final category led to an additional 4 Conformance Level
Tests. Through our mapping coverage approach we developed
a total of 27 test scenarios, which we present in Table II.

For each of the 27 scenarios, we created four input ele-
ments: a source meta-model, a target meta-model, a set of
mapping rules, and an input instance model. When possible
we leveraged models that were evaluated previously by us,
either through code generation, or models used in earlier
model transformation tests. We used homogeneous model
transformations, where the source and target meta-model are
the same, in cases where the mapping coverage called for
elements to map to itself.

To determine success, we chose two criteria for evaluation.
The first is the ability to produce the resulting model. As
with code generation, since the transformation engine will
not produce an output if it does not conform to the target
meta-model, the first success criterion is whether a model is
produced as a result of the transformation process. The second
criterion is a comparison of expected and actual outputs, using
an evaluation process we describe herein. If both of these
metrics, which are indicated by the columns in Table II, are
successful, we consider the test case to have passed.

For each test scenario, we manually produced an instance
model that conformed to the target meta-model to represent
the expected output of applying the transformation rules to the
input model. We used the 27 expected outputs for comparison
against the observed outputs of the transformation process.

To run the evaluation, we used the model transformation
engine to apply the rules and produce outputs, one scenario at a
time and stored the resulting models. Following the production
of the 27 observed outputs, we performed a manual compari-
son by two authors independently to verify their equivalence.
In this manual, point-by-point, inspection, we ignored non-
semantic changes, such as position within the model. We
considered correctness in this case to be when the actual and
expected outputs matched based on our criteria.



C. Results & Discussion

To answer RQ1, we rely on the results of our code gen-
eration evaluation. In particular, we identified 51 scenarios
represented by 13 test cases to provide sufficient coverage,
each evaluated on four criteria. The results of this evaluation
are in Table I, where each row represents a scenario and the
four criteria are shown in the resulting columns. Through this
experiment, we demonstrated that every test scenario produced
valid code that also included links to the original source
models by way of ASCII art headers. 100% of the test cases
passed, including the additional complex example, providing
confidence in our code generation engine, and providing a
positive answer to the research question. Through the SuMo
process, our code generation engine is able to consistently
produce valid and correct code for every valid input model.

To answer RQ2, we rely on the results of our model
transformation evaluation. In this experiment we identified
27 specific scenarios to provide sufficient coverage of model
transformation, mapping types and model element types, and
execute a transformation for each scenario. The results of
this experiment are in Table II, where each row represents
the transformation scenario and the results columns represent
the success criteria. As with code generation, we found that
every test scenario passed in both criteria, thus providing a
100% correctness rate for the model transformation engine.
Through the consistent guidance and feedback provided during
model transformation specification, the SuMo process ensures
the consistent generation of valid outputs in a model-to-model
transformation for all evaluated input models.

In our evaluation, we were able to answer both research
questions in the affirmative. This provides solid evidence that
the SuMo guided and supportive process and M2M and M2T
model transformation engines are consistently able to produce
valid outputs. These positive results indicate that the guidance
provided by SuMo prevents the creation of invalid models for
use in code generation and model transformation. Additionally,
our guided and supportive approach model transformation
specification ensures that only valid outputs can be produced
for future use. The SuMo process we developed is intended to
work with our intentionally constrained UML customization.
However, we predict in general that the provision of guidance
and feedback throughout supportive modeling and transforma-
tion processes will improve the overall quality of the resulting
model transformations.

VI. CONCLUSION

To conclude we present several retrospective views of this
research and aim to adequately frame our results. Specifically,
we acknowledge threats to the validity of our approach, discuss
potential future work to expand this process, and finally
present a summary of key results and conclusions.

A. Threats to Validity

The first threat to validity in this research is related to the
fact that, while one of the main goals of this work was based
on easing the burden of the model transformation process, we

TABLE I
CODE GENERATION EVALUATION RESULTS

Functionality Covered T G A C M
Class Level Tests

Normal Class ClassEmpty 1/1
Abstract Class ClassAbstract 1/1

Attribute Level Tests
Integer Attribute
Double Attribute
String Attribute
Boolean Attribute

AttributesType 1/1

Integer Attribute with Value
Double Attribute with Value
String Attribute with Value
Boolean Attribute with Value

AttributesType
AndValue 1/1

Integer Type Default
Double Type Default
String Type Default
Boolean Type Default

AttributesType
AndDefaultValue 1/1

Public Attribute
Protected Attribute
Private Attribute

Attributes
Visibility 1/1

Single Optional (0..1)
Single Required (1..1)
Multiple Optional (0..m)
Multiple Optional (0..*)
Multiple Required (1..m)
Multiple Required (1..*)
Multiple Required (m..n)
Multiple Required (m..*)

Attributes
Bounds

AndArray
Values

1/1

Relation Level Tests
Inherit from Abstract Class
Inherit Integer
Inherit Double
Inherit String
Inherit Boolean

Relations
Inheritance
Primitives

3/3

Inherit Reference
Inherit Composition
Multiple Inheritance

Relations
Inheritance

Objects
6/6

Single Optional (0..1)
Single Required (1..1)
Multiple Optional (0..m)
Multiple Optional (0..*)
Multiple Required (1..m)
Multiple Required (1..*)
Multiple Required (m..n)
Multiple Required (m..*)

Relations
Reference
Bounds

8/8

Single Optional (0..1)
Single Required (1..1)
Multiple Optional (0..m)
Multiple Optional (0..*)
Multiple Required (1..m)
Multiple Required (1..*)
Multiple Required (m..n)
Multiple Required (m..*)

Relations
Composition

Bounds
8/8

Self Reference Relation Self Reference 2/2

Self Composition Relation
Self

Composition 2/2

Legend: T - Test Case Name
G - Code Successfully Generated?
A - ASCII Art Correctly Generated? (X / Y files correct)
C - Code Successfully Compiled?
M - Matched Expected Output

opted not to perform any user studies to assess this aspect.
Instead, we chose for this evaluation to focus solely on the
validity of the transformations as a means of supporting the
SuMo processes. While a user study would further support
this claim, we deemed it most appropriate to first conduct
an internal validation and evaluation before recruiting and
experimenting with users.

Another potential threat is the manual evaluation processes
in our methods. Specifically, the manual creation of expected
outputs in both experiments, and the manual comparisons we
performed for the ASCII art and M2M transformation output
evaluations. To mitigate these threats, two independent mem-
bers of the research team evaluated the expected outputs for
correctness. We employed the same method for the point-by-
point evaluations of the ASCII art and M2M transformations.



TABLE II
MODEL TRANSFORMATION EVALUATION RESULTS

Functionality Covered Transform? Match?
Class Level Tests

Class to Self
Class to Another Class
Class to Class with Assignment
Class to None

Attribute Level Tests
Attribute to Self
Attribute Type Conversions
Attribute Counting Conversions
Attribute to None
Attribute with Assignment

Relation Level Tests
Relation to Self
Relation to Another Same Type
Relation to Different Type
Relation Counting Conversion
Relation to Attribute
Attribute to Relation
Relation to None

Complex Mapping Level Tests
Complex Class Mapping (if-else)
Complex Class Mapping (if-elseif-else)
Complex Class Mapping with None
Complex Attribute Mapping (if-else)
Complex Attribute Mapping (if-elseif-else)
Complex Attribute Mapping with None
Complex Mapping with Multiple Assignments

Conformance Level Tests
Filling In Unmapped Required Attributes
Filling In Unmapped Required Relations
Removing Extra Attributes
Removing Extra Relations

B. Future Work
SuMo currently focuses solely on structural models based

on our customized version of UML class diagrams. However,
much of the expressability afforded by MDSE approaches
comes from the ability to model system behavior in addition
to structure. Thus, we have plans to extend our modeling
environment and code generation facilities to include a sim-
ilar UML custom variant based on statecharts, specifically
in the style UML-RT statecharts and capsule diagrams. By
adding additional behavioral capacities, we hope to expand
the usefulness/applicability of the SuMo approach. Another
planned extension is to allow for code generation to additional
languages, including user-defined targets.

To assess the effectiveness of these methods in facilitating
understanding and applying model transformations, it is bene-
ficial to perform user studies that target these aspects. It is our
goal, once we complete behavioral features and extensions,
to plan and perform a comprehensive user study, potentially
in a classroom setting. Users will provide feedback on the
process, and we can compare SuMo with existing tools based
on quantitative and qualitative metrics.
C. Summary

Through our research and development of SuMo, our Sup-
portive Modeling process, which we realized via a supportive
modeling language and live-modeling environment, and two
separate transparent and guided model transformation engines,
we were able to assess two crucial research questions. Regard-

ing RQ1, we determined that our code generation process
was able to generate valid code in 100% of input models.
Further, the generated code was found to be automatically
documented with elements linking directly to the input mod-
els, aiding in transparency of the code generation process.
In this experiment, validity meant code both compiled and
produced output that exactly matched the expected output.
With respect to RQ2, we found that the strongly guided model-
transformation specification engine was also able to produce
valid results in 100% of the input models in our evaluation.
This definition of validity includes a demonstration that even
incomplete transformation specifications still produce valid
outputs due to our conformance assisting algorithms. Every
input model and transformation specification produced correct
and valid output, without issue. We believe this work is an im-
portant step towards supportive live-modeling. By facilitating
an exploratory modeling process and environment, through our
customized UML variant and guided approaches, we support
the creation and maintenance of high-quality model artifacts.

REFERENCES

[1] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-Driven Engi-
neering Practices in Industry,” in International Conference on Software
Engineering. Waikiki, Honolulu, Hawaii: ACM, 2011, pp. 633–642.

[2] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software
Engineering in Practice,” Synthesis lectures on software engineering,
vol. 3, no. 1, pp. 1–207, 2017.

[3] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, “Grand
Challenges in Model-Driven Engineering: an Analysis of the State of the
Research,” Journal of Software and Systems Modeling, pp. 1–9, 2020.

[4] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model Transfor-
mation Approaches,” IBM Systems Journal, vol. 45, no. 3, 2006.

[5] Z. Hemel, L. C. Kats, and E. Visser, “Code Generation by Model
Transformation,” in International Conference on Theory and Practice
of Model Transformations. Springer, 2008, pp. 183–198.

[6] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A Model
Transformation Tool,” Science of computer programming, vol. 72, no.
1-2, pp. 31–39, 2008.

[7] E. J. Rapos, “We’ll Make Modelers Out of ’Em Yet: Introducing
modeling Into a Curriculum,” in Proceedings of the 21st ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, 2018, pp. 130–134.

[8] E. J. Rapos and M. Stephan, “IML: Towards an Instructional Modeling
Language,” in Proceedings of the International Conference on Model-
Driven Engineering and Software Development, 2019, pp. 417–425.

[9] S. W. Ambler, “Agile Model Driven Development is Good Enough,”
IEEE Software, vol. 20, no. 5, pp. 71–73, 2003.

[10] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

[11] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The Epsilon Transforma-
tion Language,” in International Conference on Theory and Practice of
Model Transformations. Springer, 2008, pp. 46–60.

[12] Eclipse Consortium et al., “Java Emitter Templates (JET),” 2003.
[13] O. Badreddin, “Umple: a Model-Oriented Programming Language,”

in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2, 2010, pp. 337–338.

[14] M. A. Garzón, H. Aljamaan, and T. C. Lethbridge, “Umple: A Frame-
work for Model Driven Development of Object-Oriented Systems,”
in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 2015, pp. 494–498.

[15] T. C. Lethbridge, V. Abdelzad, M. H. Orabi, A. H. Orabi, and
O. Adesina, “Merging Modeling and Programming Using Umple,” in
International Symposium on Leveraging Applications of Formal Meth-
ods. Springer, 2016, pp. 187–197.

[16] J. Cabot and M. Gogolla, “Object Constraint Language (OCL): a
Definitive Guide,” in Int’l school on formal methods for the design of
computer, communication and software systems. Springer, 2012.


