Simulink Model Transformation
for Backwards Version Compatibility

Bhisma Adhikari, Eric J. Rapos, Matthew Stephan
Computer Science & Software Engineering
Miami University
Oxford, OH, USA
{adhikab,rapose,stephamd } @ miamioh.edu

Abstract—Simulink is a leading modelling language and data-
flow environment for Model-Driven Engineering, prevalent in
both industrial and educational contexts. Accordingly, there
are many standalone publicly-available tools for analyzing and
using Simulink models for various purposes. However, Simulink’s
model format has evolved to a new proprietary format, rendering
many of these tools useless. To combat this, we devise an
approach, SLX2MDL, that applies transformation rules based
on Simulink syntax to transform the new SLX format models
to models conforming to the legacy MDL syntax. The resulting
approach enables backwards compatibility with existing tools,
including previous versions of Simulink itself. Our 4-phase
process includes analysis and extraction, merging and transfor-
mation of the common elements, transformation of the specialized
Stateflow elements, and output production. We position this
problem within the literature by comparing and contrasting
similar, but insufficient, related approaches. We evaluate and
validate SLX2MDL by applying it to 543 standard and publicly
available models from an established and curated corpus. Our
evaluation demonstrates 100% validity and correctness on these
models based on functional equivalence. Further, we evaluate
our approach’s performance and find it consistent and scalable
as model size and complexity increases.

Index Terms—model transformation, Simulink, backwards
compatibility, versioning, model evolution, model syntax

I. INTRODUCTION

Similar to problems faced by legacy code, software mod-
elling languages evolve over time. This presents challenges
for tools and technologies based on deprecated language
definitions. One significant example of this is the evolution
of Simulink model formats. Simulink is a modelling language,
which is part of the Matlab environment, that allows engineers
to create executable representations of a variety of systems. A
new model format was introduced that altered significantly
the way Simulink models were stored in files. Both formats
are still supported to some extent today. The change was
essentially an underlying textual syntax shift from a plain text
representation (MDL) to an archive file containing various
hierarchical and model-sensitive XML-based representations
(SLX). These models, having a different underlying textual
syntax representation, are not backwards compatible. As a
result, they cannot be opened in older versions of Simulink.
Additionally, many of the supporting tools that were designed
based on the MDL format do not work with the new format.

Simulink itself possesses some facilities to convert between
these model formats. However, many standalone and/or ex-

ternal tools work with Simulink models in only their origi-
nal MDL format. They are no longer capable of analyzing
models created in newer versions of Simulink. In this article,
we describe our design and application of rule-based model
transformations to facilitate automatic standalone conversion
of Simulink SLX files to corresponding Simulink MDL files.
This involves model analysis, including contextual and struc-
tural concerns, and corresponding rule-based manipulation of
models so they conform to the MDL syntax and are thus
compatible with the dearth of existing MDL-based tools.

A. Motivation

There are several standalone tools that rely explicitly on
the MDL file format. Some of these applications focus on
model clone detection, for example, Simone [1], ConQAT
[2], and many others [3]. Other notable examples include
safety analysis [4], synthesis of fault trees [5], and abstract
simulation [6]. Rather than requiring each of these independent
tools to re-implement their functionality for the updated model
format, it became evident to us and others that a single
and open approach to transform models from one format to
another, in the form of a preprocessor, would be an ideal
solution with meaningful impact. Furthermore, due to financial
and/or technical barriers, some users rely explicitly on older
versions of MATLAB/Simulink that are incapable of opening
models in the new SLX format nor able to automatically
convert SLX models to the existing MDL format. This may
especially be true in the software analysis domain where
researchers and engineers may be more interested in the
artifact analysis than their actual use within the development
environment. While conversion is possible in newer versions
of Simulink, it is not something readily available to all users.
Thus, in the spirit of openness and accessibility to all, we
pursue this research. One such example, from the MATLAB
Central forum, motivates this explicitly. Regarding different
file formats, a user indicates that they °...prefer the MDL file
and actually in [their] work [they] need the plain text MDL
file’!. Another user responding to that post replies, “I do not
have Simulink, but from time to time I can debug simulink
problems by reading the text MDL file.” This is one example

Uhttps://www.mathworks.com/matlabcentral/answers/60706-newbie-
question-about-simulink-new-file- format-slx

from multiple on Matlab Central and other forums. For these
reasons and more, it is important to research, devise, and apply
an open and automatic transformation-based approach capable
of transforming SLX-based models to the corresponding MDL
syntax representations. It must be standalone/external to Mat-
lab to remove barriers caused by requiring any specific version
of MATLAB/Simulink.

B. Contributions

Through this work, we make the following contributions,

o Empirically derived definitions of SLX and MDL syntax
for the domain-specific visual language Simulink

o Implementation and application of an automatic model
transformation and supporting tool support in the form
of SLX2MDL, which can transform SLX representations
to MDL version representations while preserving the
semantics

¢ An evaluation of effectiveness applying SLX2MDL on
an established corpus of Simulink models

II. BACKGROUND

In this section, we provide brief background on source/syn-
tax transformation and Simulink. Given the context of this
article, we presume that the readers have sufficient background
in Model-Driven Engineering.

A. Source Transformation

Source transformations take many forms, but the term
generally applies to the conversion of program or artifact
source from one form to another following some set of rules
changing the syntactical elements, the semantics, or both. One
such example, and one of the most popular implementations
of this type of transformation, is the TXL source trans-
formation language[7]. TXL implements a standard source
transformation, and is the most closely related to our work.
However, a source transformation may take other forms and
employ other techniques, such as reverse engineering/design
recovery [8], software reengineering/restructuring [9], or for-
ward engineering or metaprogramming [10]. Any source/syn-
tax transformation tool relies on the conformance to input
and output language definitions (grammars), and a mapping
between them (transformation rules). Ours is another example
and application of such a transformation technique in that we
are transforming the syntactical elements from one format to
another while being sensitive/aware of the semantics denoted
by the Simulink models.

B. MATLAB Simulink

Simulink is a combination textual and data-flow graphical
programming environment that leverages many of the benefits
of MDD to design and implement quality software. There
are a variety of domains that leverage Simulink including
wireless communications, power electronics control design,
control systems, signal processing, robotics, advanced driver
assistance systems, image processing and computer vision, and
more. Additionally, it is employed at many academic institu-
tions in a variety of STEM (Science, Technology, Engineering,

and Mathematics) disciplines. Simulink is a visual language
that employs model artifacts that represent the structure and
behavior of a system to facilitate execution, perform analysis,
and ultimately generate code for deployment.

III. LANGUAGE AND FORMAT PRELIMINARY ANALYSIS
AND OBSERVATIONS

Our work exploits the fact that the textual syntax used
by Matlab to store Simulink models was migrated from the
original MDL format to a new SLX format. The SLX format
was introduced in Simulink version R2012a, and was made
the default format to store Simulink models beginning from
Simulink version R2012b [11]. In conducting our research
and realizing our goals in devising an open and automatic
approach for transforming SLX-syntax models to MDL-syntax
models, we first performed an analysis of the two different
formats. This was necessary to empirically derive sufficient
definitions of the source and target meta-models, as well as
rules to enable the transformations. Our meta-model definition
process involved grammar analysis, format inspection, and
documentation of the model source syntax. We highlight and
discuss this analysis in this section. Due to our use of the un-
derlying textual nature of Simulink model representations, and
our specific transformation approach, graphical representations
of the meta-models were not needed. Instead the language
definitions are represented explicitly and directly in the source
code for our process. A formal validation of these meta-model
definitions occurs through their use in the SLX2MDL process
and its evaluation.

A. MDL Format

The MDL model format is a textual file format used to
store Simulink models. This is a proprietary file format owned
by Mathworks, the organization responsible for Simulink.
The standard syntax to denote different file components is
not available publicly. We leverage existing work devising a
TXL grammar for MDL format in describing the MDL file
structure [1].

In MDL format, the Simulink syntax uses key-value pairs.
Each key-value pair constitutes a default_element. While
the key of a default_element is always an unquoted string
of characters, referred to as an id in the TXL grammar,
the value can take one of several different forms. Based
on these different forms, a default_element can be either a
default_single_element or a default_list_element. The value
of a default_single_element can be either a number, or a
string, or a list of numbers. In contrast, the value of a
default_list_element is a list of other default_elements can be
within a pair of braces. We use the terms default_list_element
and block interchangeably from hereon. A default_element can
contain one or more nested default_elements. As a result, the
overall structure of an MDL file contains the Simulink model
information organized as hierarchical key-value pairs.

Listing 1, which we derived from our analysis, shows
a typical hierarchical structure of an MDL file. Not all
default_elements are shown in this listing for the sake of

brevity. The default_element with “Model” as its key lies at
the top of the MDL hierarchy. This default_element consists
of other default_single_elements, for example, Name, and
default_list_elements for example, Graphical Interface. While
the vast majority of Simulink models have Model as their
topmost default_element, some models may have Library or
Subsystem instead. As illustrated in Listing 1, it is important
to note the Srateflow block is not nested within the Model
or Library or Subsystem. It occurs as a sibling of the Model
block rather than its child in terms of the MDL hierarchy.
Some other blocks that occur as a sibling of the Model are
MatData, and MatResources.

Model {

Name "my simulink model"

Version 10.0

GraphicalInterface {}

Array {

Simulink.ConfigSet {
Array {

Simulink.SolverCC {}
Simulink.DataIOCC {}
Simulink.OptimizationCC {}
Simulink.DebuggingCC {}
Simulink.HardwareCC ({}
Simulink.ModelReferenceCC {}
Simulink.SFSimCC {}
Simulink.RTWCC {}
S1lCovCC.ConfigComp {}
hdlcoderui.hdlcc {}

}
}
BlockDefaults {}
AnnotationDefaults {}
LineDefaults {}
MaskDefaults {}
MaskParameterDefaults {}
BlockPaameterDefaults{}

System {
Block {
System {
Block {}
Line {}
}
}
}
}
Stateflow {
machine{}
chart {}
state{}

transition{}
junction{}
dataf{}
event {}
instance{}
target{}

Listing 1. MDL File Syntax

B. SLX Format

An SLX file is an archive file that contains mostly XML files
arranged in a defined hierarchical structure, with some addi-
tional non-XML files providing supplemental data. Similar to
the MDL format, SLX is composed of a proprietary file format
and syntax owned by Mathworks. According to Mathworks,

“Saving Simulink models in the SLX format typically reduces
file size and solves some problems in previous releases with
loading and saving MDL files containing Korean and Chinese
characters.” [12].

We derived Listing 2 from our analysis. It illustrates a
typical structure of an SLX archive file. The majority of the
Simulink model contents are stored in the following files,

 simulink/blockdiagram.xml

« simulink/configSet0.xml

« simulink/bddefaults.xml

« simulink/graphicallnterface.xml
« simulink/stateflow.xml

decompressed-slx
[Content_Types] .xml
_rels
metadata
coreProperties.xml
mwcoreProperties.xml
mwcorePropertiesExtension.xml
mwcorePropertiesReleaseInfo.xml
thumbnail.png
simulink
ScheduleCore.xml
ScheduleEditor.xml
_rels
blockdiagram.xml.rels
configSetInfo.xml.rels
bddefaults.xml
bdmxdata
X.mxarray
y.mxarray
z.mxarray
blockdiagram.xml
configSet0.xml
cofigSetInfo.xml
graphicalInterface.xml
modelDictionary.xml
plugins
AnimationPlugin.xml
DiagnosticSuppressor.xml
LogicAnalyzerPlugin.xml
NotesPlugin.xml
SLCCPlugin.xml
WebScopes_FoundationPlugin.xml
stateflow.xml
windowsInfo.xml

Listing 2. Structure of SLX Archive File

Whereas supplemental model contents can be found in the
following files,

« metadata/coreProperties.xml

o simulink/plugins/DiagnisticSuppressor.xml

« simulink/plugins/LogicAnalyzerPlugin.xml

« simulink/plugins/NotesPlugin.xml

o simulink/plugins/SLCCPIlugin.xml

« simulink/plugins/WebScopes_FoundationPlugin.xml

Interestingly, in our analysis and experimentation, we found
some files in the SLX folder that contain information with no
direct correspondence to the MDL file format:

o _rels/.rels

« metadata/mwcoreProperties.xml

« metadata/mwcorePropertiesExtension.xml
o metadata/thumbnail.png

o simulink/_rels/blockdiagram.xml.rels
o simulink/_rels/configSetInfo.xml.rels
« simulink/modelDictionary.xml

o simulink/scheduleCore.xml

o simulink/ScheduleEditor.xml

o [Content_Types].xml

Similarly, the simulink/bdmxdata/*.mxarray files are present
only in a few Simulink models. These are binary files and are
used to store Simulink workspace data.

IV. SLX2MDL APPROACH AND IMPLEMENTATION

Having completed our initial analysis and experimentation
with the different formats, we decided to frame the problem as
a model transformation that manipulates the underlying textual
syntax while preserving the Simulink model semantics. Our
solution considers and codifies a specification based on meta-
models, and uses that to transform input instances to output
instances. We overview our overall process in Figure 1.

Our process consists of several steps to create a resulting
MDL file from an input SLX file. The basic flow of phases
consists of analysis and extraction, specialized and separate
transformation of Stateflow and non-Stateflow contents, and
merging, as we show in Figure 2. We chose Python to
implement our transformation algorithm because of its greater
suitability and growing popularity for exploratory research
projects [13]. We discuss alternatives in Section VII.

A. Extraction

SLX2MDL begins with the input SLX file. It is essentially
a compressed archive file, which SLX2MDL decompresses
and extracts all its files. SLX2MDL automatically produces an
SLX folder containing these files, most of which are XML,
organized in a well-defined SLX hierarchical structure. This
structure is based on our observations and deductions from
our earlier analysis. The extraction works on either individual
model files or collections of models for batch processing of
model sets.

B. Merging & Transformation of Non-Stateflow Content

In the SLX format, Simulink model data is distributed
across mostly XML files, with a small number of binary
and other files. In contrast, as we discovered during our
preliminary analysis, the MDL format represents Simulink
models in a single text file. Moreover, the model information
in MDL format is contained entirely within a top-level Model,
Library, or Subsystem block, with the exception of a special
Stateflow block, which occurs outside these 3 blocks. Stateflow
is a language within Simulink that allows for state diagrams
and flow-charts. Therefore, before transforming each XML
tag into its corresponding MDL representation, SLX2MDL
merges together the file contents of all relevant XML files into
one single XML file, except for simulink/stateflow.xml, which
it processes separately. SLX2MDL arranges the contents of
these XML files in the order in which they appear in the
corresponding MDL format. SLX2MDL ensures the resulting

merged file remains a valid XML file with the appropriate
object type as its top-level tag during this intermediate stage.

Following SLX2MDL’s merging of contents into a single

XML file, merged.xml, SLX2MDL transforms each element
to its corresponding MDL element individually, as each ele-
ment type requires specific transformation rules. SLX2MDL
represents each XML tag that it discovers from the source
SLX model definition by its own internal class, with a set of
features:

o a constructor for creating an instance of the class from
an XML string. The input XML string must conform to
XML metamodel.

e a public method strmdl(), which gives the MDL string
representation (a default_element) of that XML element.
The output string from this method must conform to
the definition of default _element defined in the MDL
metamodel. Thus, these methods from all classes that
model XML tags define the SLX-to-MDL transformation
rules collectively.

class Model (XmlElement) :
def __init__ (self, strval, parent_xml):

self.ps = []
self.graphicallInterfaces = []

for x in self.inner_xmls:
if x.tag == 'P':
self.ps.append(P.from_XmlElement (x))

if x.tag == 'GraphicalInterface':
self.graphicallnterfaces.\
append (GraphicalInterface.\
from_XmlElement (x))

@classmethod
def from_ XmlElement (cls, xml_element) :
return Model (xml_element.strval,
xml_element.parent_xml)

@property
def strmdl (self):

str_ = '"Model{\n'

for x in self.ps:
str_ += f'{x.strmdl}\n'

for x in self.graphiclalnterfaces:
str_ += f'{x.strmdl}\n'

str_ += '"}\n\n'
return str_

Listing 3. Class definition of < Model > tag

We show an example class definition for the Model class
in Listing 3. This class models the < Model > tag from
the simulink/blockdiagram.xml file. After merging all relevant
XML files into merged.xml file, SLX2MDL’s transformation
pipeline for non-stateflow content creates an instance of the
Model class by passing the content of merged.xml as the input
XML string to its constructor. In doing so, all nested XML
tags contained inside the < Model > tag; that is < P >
tags, < GraphicalInter face > tags, and all other nested

Source Meta-Model: ¢ _]?ijs_e_d_ .0.11. ..d Model Transformation | __ EE:S?_('_?:I_ > Target Meta-Model:
SLX File Format Rules MDL File Format
A A A
E Instance Of E Implements E Instance Of
Input Instance Model(s): — Output Instance Model(s):
User Defined SLX Models INPUT SICLING 10 [OUIPUT Generated MDL Models

Fig. 1. SLX2MDL Transformation Overview

input.skx

extract

extracted skx folder
{contains mostly xml files)

v

- blockdiagram xml

- windowsInfo_xml

- AnimationPlugin.xml
- DiagnosticSuppressor.xmi v
- LogicAnalyzerPlugin.xml

- NotesPlugin.xml

- SLCCPlugin.xml

- WebScopes_Foundation.xml
- configSet0.xml

- bddefaults xml

- graphicalinteriace.xml

stateflow.xml

merge fransform

merged.xml

fransform

output_model_only.mdl output_stateflow_only.mdl

 E— merge £

output. mdl

Fig. 2. SLX2MDL Implementation Flow

tags; are parsed by SLX2MDL. It then creates corresponding
class instances as the attributes of the Model class instance.
SLX2MDL performs this recursively for each nested XML
tag until the content of the XML tag is a non-XML string,
which is the recursive base case. The strmdl() method for
each of these classes returns an MDL representation of the
corresponding class instance by wrapping the MDL string
representations (default_elements) of the nested XML tags in
a new default_element. In short, calling the strmdl() method
on an instance of class Model works recursively and returns
the MDL representation of the entire Model block, which
SLX2MDL then writes to the file output_model_only.mdl, as
we illustrate in Figure 2.

An important consideration is that we specifically defined
separate class definitions for each possible XML tag instead
of defining a single generic class to model all XML tags
collectively. We do this intentionally to make our SLX2MDL
implementation more manageable and maintainable by ad-
dressing the nuances involved with the transformation of
different XML tags separately. This modularization allows for
the evolution of our language definitions to support yet-to-be
discovered model elements that were not present at the time
of our rule definition.

C. Stateflow Transformation

From our analysis, we determined that Stateflow content
requires separate and particular handling for an effective
transformation due to its unique nature compared to the other
model elements. Specifically, the transformation of Model (or
Library or Subsystem) elements versus that of Stateflow are
different in nature and complexity as we describe below.

Firstly, main Model (or Library or Subsystem) transforma-
tions do not require any “flattening” of the XML hierarchy.
The tree structure of the elements in the XML format remains
almost the same even after transforming it to MDL format. In
contrast, Stateflow’s transformation necessitates flattening the
XML hierarchy such that “major” blocks; that is, machine,
chart, state, tramsition, junction, data, event, instance, and
target; appear immediately inside the Stateflow block rather
than being nested within other blocks as in the simulink/block-
diagram.xml file. Secondly, the transformation of Stateflow
requires generation of identifiers for different elements and
keeping track of those identifiers in order to generate the
“derived” attributes, such as linkNode and treeNode, correctly.
We call these attributes “derived” as they do not occur explic-
itly in the XML model representation. These identifier-based
attributes establish the parent-child and siblings relationships
in the MDL representation of the Stateflow model. This
was our conclusion in our analysis and experimentation, and
is also corroborated by the works of Chen [14], [15] and
Dominguez [16] focusing on clone detection and Stateflow to
SMV translation, respectively. Such relationships in the SLX
format are maintained implicitly within the XML tree hier-
archy. Identifier generation needs to satisfy some uniqueness

constraints. Any error in this step can result in a corrupted
Stateflow block. Thirdly, unlike the transformation of non-
Stateflow content, the order of blocks matters for Stareflow
transformations. For example, in a Stateflow block, an instance
block must not appear before a referenced machine block.
Lastly, the XML tags that appear in simulink/stateflow.xml are
specific to Stateflow only. None of these tags, with the excep-
tion of the < P > tag, appear in other XML files, nor do any
of the tags from other files appear in simulink/stateflow.xml.

class Stateflow (StflXmlElement) :
def __init__ (self, strval, parent_xml):

self.ps = []
self.machines = []

for x in self.inner_xmls:
if x.tag == 'P':
self.ps.append(
P.from_StflXmlElement (x))

if x.tag == 'machine':
self.machines.append (
Machine.from_StflXmlElement (x))

@classmethod
def from StflXmlElement (cls, stfl_xml_element) :
return Stateflow(stfl_xml_element.strval,

stfl_xml_element.parent_xml)

@property
def strmdl (self):
str_ = 'Stateflow {\n\n'

for x in self.attrs:
if not x.name \
in self._id_based_mdl_attrs:
str_ += f'{x.name} "{x.value}"\n'

for x in self.ps:
if not x.name_attr.value \
in self._id _based_mdl_attrs:
str_ += f'{x.strmdl}\n'

for x in self.machines:
str_ += f'{x.strmdl}\n'

str_ += '}'
return str_

Listing 4. Class definition of < Stateflow > tag

Except for these differences, the transformation of Stateflow
proceeds similarly to our transformation of non-Stateflow
content. SLX2MDL models all XML tags it discovers in
the simulink/stateflow.xml file in separate classes. As an ex-
ample, Listing 4 shows the class definition that models the
< Stateflow > tag found in simulink/stateflow.xml file. In
order to “flatten” the XML hierarchy, we define the strmdi()
method of some classes such that the hierarchical contents
appear outside the closing brace, “}”, of its XML parent block.
We illustrate this in Listing 5 where we present the definition
of the strmdl() method of class Machine. This class models
the < Machine > tag found in simulink/stateflow.xml file. In
the MDL representation, SLX2MDL must move the children
of Machine out of the Machine block such that they appear

immediately inside the Stateflow block. Therefore, in this
method definition, SLX2MDL writes them outside the closing
brace of the Machine block. It writes the output of Stateflow’s
transformation to the file output_stateflow_only.mdl, as per the
process we illustrated in Figure 2.

@property

def strmdl (self):

str_ = 'machine {\n'

str_ += f'id {self.idmdl}\n'
str_ += f'name "dummy_name"\n'

if self.firstTarget:
str_ += \
f'firstTarget {self.firstTarget.idmdl}\n'

x in self.attrs:
if not x.name in self._id_based_mdl_attrs:
str_ += f'{x.name} "{x.value}"\n'

for

for x in self.ps:
if not x.name_attr.value in self.\
_id_based_mdl_attrs:
str_ += f'{x.strmdl}\n'

for x in self.debugs:
str_ += f'{x.strmdl}\n'

str_ += '"}\n\n'

if self.children:
str_ += f'{self.children.strmdl}\n'

return str_

Listing 5. Method strmdl definition of < Machine > tag

D. Producing Final Output via Merging

The final step in our transformation pipeline is to merge
the intermediate files (output_stateflow_only.mdl and out-
put_model_only.mdl) into a single result file representing
the same Simulink model(s) but using the MDL syntax
for the underlying text format. SLX2MDL concatenates the
contents from these two files to produce the final output,
which it then writes to the file output.mdl, as we showcase
in the bottom right of Figure 2. We stress that not all
Simulink models have Stateflow elements. For such models,
output_stateflow_only.mdl is not applicable. The final step in
the process is the removal of all intermediate files from the
directory, leaving only the input SLX file, and the resulting
MDL file which, by default, is renamed from output.mdl to
have the same base name as the input model. For example,
Engine.slx would produce an output model named Engine.mdl.

V. APPLICATION AND EVALUATION

To evaluate the effectiveness of our application of trans-
formation to facilitate backwards compatibility in the form
of SLX2MDL, we conducted an experiment converting SLX
models to their corresponding models adhering to the MDL
syntax. Specifically, we conducted a systematic evaluation
applying SLX2MDL on a curated, public, and independently
verified corpus of Simulink models [17]. This section describes
the models we selected, the design of our evaluation experi-
ment, and our results. SLX2MDL and all the instructions and

materials pertaining to our evaluation are available publicly
for reproduction and replication purposes [18].

A. Materials - Model Selection

Chowdhury et al. have curated and published a large set
of Simulink models intended to assist empirical research and
tool development [17]. Their set is available online to all.
We chose this set because of its large size, its models are
from a variety of application domains (automotive, avionics,
electronics, energy, robotics, and other), and its public avail-
ability allows our experiments to be replicated and reproduced
by independent researchers. Furthermore, this set of models
has been analyzed and validated independently for use in
empirical research [19]. They do so in consultation with
industry collaborators, concluding the models are sufficiently
large and “mature” for research purposes and are diverse
enough for good replication.

The corpus contained a total of 1166 Simulink models at the
time of evaluation. Only 946 of these models are downloadable
directly from the repository, with the rest available via links to
download directly from Mathworks due to licensing require-
ments. Of these 1166 Simulink models, 547 are in SLX format,
with the rest already in MDL format and, thus, not suitable
for our experiment. We removed four of the SLX files from
the evaluation dataset for various reasons: two of the models
failed to load in Matlab Simulink, and the other two failed to
upgrade to our baseline version of R2019b (see Section V-B1).
As a result, we used 543 SLX-formatted Simulink models as
the input for the evaluation of SLX2MDL.

B. Method - Experimental Design

When considering what constitutes a correct transformation
result, we decided on two major criteria that must be met for
each transformation: a valid model file conforming to the MDL
syntax, and functional/semantic equivalence between the SLX-
syntax and MDL-syntax model. In order to evaluate and val-
idate our application of SLX2MDL for model transformation
using the corpus of models, we performed a 5-step evaluation
experiment, which we describe in this subsection.

1) Standardization of SLX Model Versions: The 543 SLX
files of the evaluation dataset were created in various versions
of Matlab Simulink, meaning they are encoded with different
SLX versions. Even within the SLX model format, there exist
differences between versions. Since we designed SLX2MDL
based on recent features, it works best for SLX versions
corresponding to Matlab Simulink R2017b or newer. Thus,
in order to have a uniform version for evaluation and our
subsequent claims, we first converted all input models to a
recent version (R2019b) using Simulink’s built-in conversion
functionality. Additionally, by upgrading all input SLX files
to one single recent version, we are able to better ensure
reproducibility of our evaluation experiments.

2) Simulink-Based Conversion for Baseline Comparison:
For each model stored in SLX format, we first used Simulink
to convert the SLX model to a corresponding MDL format
using its internal proprietary conversion algorithms available

only in recent versions of Matlab. We do this to obtain our
baseline ground truth in the form of an example “valid” and
equivalent MDL file for later comparison.

3) SLX2MDL Conversion: After obtaining the baseline,
we independently converted each model using SLX2MDL to
generate an MDL model file. We completed this process using
a batch processing feature of SLX2MDL that we added for
faster processing of a large group of models.

4) Verifying Model Validity in Simulink: For each of the
models we converted using SLX2MDL, we opened them
manually within Simulink to demonstrate that the resulting
model conforming to the MDL syntax is valid, well-formed,
and capable of opening without issue. We performed a detailed
and methodical (point-by-point) inspection of each and every
model to ensure that no errors were present. If the model
opened successfully with no errors present, we noted that the
model was the result of a valid transformation.

5) Functional Simulink Model Comparison: The next as-
pect of evaluation was to ensure that the resulting model
was functionally (semantically) equivalent to the one produced
using the proprietary Simulink conversion. To do this, we
leveraged the built-in comparison tool provided by Simulink,
which is capable of identifying any differences between two
models.

Based on our preliminary analysis of the two syntaxes,
there were a number of differences that we considered accept-
able/allowable differences for the purpose of evaluation. These
include graphical changes and other non-semantic differences,
which is consistent with other work in model comparison [3],
as well as any variations in Model Configuration Parameters.
For the latter, this is based on the fact that our preliminary
analysis and experimentation determined that there was no
discernible equivalence between the original SLX and the
Simulink output MDL file with respect to these parameters.
As a result, we were unable to codify transformation rules
for these model aspects. We further deem this as acceptable
given that these parameters relate to simulation configuration
rather than the actual model content and structure itself, thus
excluding these types of differences does not impact our
definitions of correct model transformation. To summarize,
for each comparison, if the MDL-syntax conforming model
generated by SLX2MDL was equivalent to the one generated
by Simulink, omitting the above exceptions, we recorded the
transformation as correct.

6) Performance Evaluation: As an added level of evalu-
ation, we examined the performance of our transformations
to ensure that the transformation was not only feasible, but
also that as models increase in size and complexity, the time
required to convert between SLX and MDL does not increase
inordinately. To that end, we decided to measure the execution
time of each transformation and record it for each model in
the evaluation set. Further for each model, we determined its
size, defined as the number of lines in the resulting MDL file.
While size is not solely based on the number of source lines,
this provides a consistent metric to with which to measure
against performance.

TABLE I
EXPERIMENTAL RESULTS OF MODEL TRANSFORMATION APPLICATION

Input

Repository SLX files Valid Equivalent
GitHub 335 335 (100%) | 307 (91.6%)
Matlab Central 171 171 (100%) 132 (77.2%)
Source Forge 17 17 (100%) 17 (100%)
Other 20 20 (100%) 15 (75%)
TOTAL 543 543 (100%) | 471 (86.7%)

—— line of best fit: y = 0.0019x - 3.58; r? = 87.97%
200
G 150
e
0

0 20000 40000 60000 80000
Model Size (number of source lines in MDL file)

100000

Fig. 3. SLX2MDL Execution Times as a Function of Model Size

VI. RESULTS & DISCUSSION
A. Results

For each model in the input set we recorded a result for our
two criteria: model validity and functional equivalence. Ad-
ditionally, we also recorded the time the transformation took
and the number of lines in the resulting MDL file to observe
and evaluate the transformation performance. We display the
results of our evaluation as totals in Table I. Through our
evaluation, we determined that 543/543 input SLX example
models (100%) produced valid output MDL models, capable
of opening in Simulink. Further, we found 471/543 of the
same evaluation models (86.7%) to be functionally equivalent
to those produced using the Simulink conversion algorithms.
In the discussion, we consider the remaining non-equivalent
models.

In terms of performance for the evaluation model set,
SLX2MDL requires an average execution time of 6.29 seconds
per model. On average, a Simulink model in the evaluation
dataset contains 5163 lines of text in MDL format. Perhaps
more interestingly, Figure 3 plots the execution time for
SLX2MDL to perform a transformation against the size of the
model, measured by the number of source lines in the resulting
MDL file. We added a line of best fit to approximate the
execution time as a function of model size with the following
equation, exec_time(s) = 0.0019 x num_mdl_src_lines —
3.58. This line presents an 72 value of 0.8797, indicating
strongly that the execution time scales linearly as model size
increases. This indicates that as the model size increases, the
execution time increases linearly, boasting an O(n) complexity.

B. Discussion

Although SLX2MDL is not able to produce corresponding
MDL blocks for binary files (data files and image files) in the

SLX format, the converted MDL files are still valid Simulink
models that load without issue in Simulink based on our point-
by-point inspection.

All the models we found not to be functionally equivalent
are a result of missing information from binary files that
cannot be obtained directly from the SLX format due to their
proprietary encoding. This is acceptable, however, as the data
contained in these binary files relates only to the storage or
workspace data and image information, none of which have
an impact on the function or structure of the model itself.
Given this, if we add this context/exception to our definition
of equivalence, all the models are functionally/semantically
equivalent. Doing so brings the total of functionally equivalent
models generated by SLX2MDL up to 543/543 (100%).

Our Python-based implementation is reasonably quick. It
takes SLX2MDL an average of 6.29 seconds to transform a
Simulink model from various domains, and the conversion
time grows approximately in a linear fashion. A typical
Simulink model contains several thousand lines of text in
the MDL format. We believe this is acceptable because the
application of SLX2MDL will likely be done once on an SLX
model.

1) Limitations & Threats: The first limitation is model files
storing content in a binary format. Some Simulink models
contain some information stored as binary files in the SLX
format. These files are mostly used to store workspace-data,
and are stored as .mxarray files located at simulink/bdmx-
data/*.mxarray. In the absence of the exact format on how
information is stored in these files, we cannot read them,
and the resulting MDL file produced by our tool lacks the
corresponding information. We addressed why this is accept-
able earlier. Some Simulink models contain PNG image files,
which are located at simulink/resources/*.png in the SLX
format. In a standard MDL format (produced by Simulink
itself), such image information is written in the MatResources
block as ASCII characters. However, in lieu of Simulink’s
proprietary algorithm that converts such binary image file
data into a sequence of ASCII characters, our tool cannot
create the corresponding MatResources block to represent such
image files. Hence, the converted model lacks any image-file
information present in the original SLX file. However, the
converted model still loads in Simulink without the workspace-
data and image information.

The second limitation stems from our definition of the SLX
syntax. Given that the full syntax/format is not published by
Mathworks, our definition is based on our analysis and exper-
imentation of models, derived empirically. Thus, our current
implementation cannot handle instances when the input SLX
contains XML files that contain tags that we did not account
for, nor ones that are added Simulink evolves. However, this
is not a major obstacle nor a concern as it requires only a
minor update in the definition. If SLX2MDL encounters any
such previously unseen tags, it raises an exception which is
logged in a file. This file contains the information necessary
to allow the language definition to be updated with relative
ease. Because we publish the source/project and evaluation of

SLX2MDL publicly, anyone has the ability to do this [18].

A threat to the validity of our evaluation is our allowance of
variations in the model configuration parameters in considering
a model functionally equivalent. While this was a reasonable
determination in our interpretation due to the unknown nature
of how these values are converted internally by Simulink, it
could still present an issue for the deployment of SLX2MDL
broadly. However, given the target applications of model
analysis, clone detection, and other similar approaches that
tend to focus more on models’ structural aspects, which is
captured by SLX2MDL, the omission of parametric changes
is not an issue for our evaluation.

VII. RELATED WORK

Our initial research aimed to leverage the successes of
the source transformation community. We first considered
the TXL Source Transformation Language[7] as a means of
converting from SLX to MDL, which is one of, if not the
leading, source transformation language [20]. TXL grammar
files exist for both XML and MDL files, so there was no need
to define a language grammar, only the transformation rules.
However, since the SLX file format consists of many XML
files, the solution to this problem necessitated an advanced
contextualization of these files to create a single input XML
file. This was the first in a series of roadblocks we faced
early on, especially since our analysis demonstrated that SLX
model source file contextualization was not always completed
by Simulink in a consistent manner. The second significant
issue arose with the realization that the existing MDL grammar
file for TXL has not been updated in several years and
thus did not include new language features that exist in the
newer Simulink models. This issue is further exacerbated by
the complexities of Stateflow models. These updates would
have required significant effort to update the formal grammar,
which is something that we would need to do in a standalone
implementation regardless. The final issue we faced with a
TXL based approach is that the transformation is not always
as simple as a consistent application of replacement rules.
There is a need to track object identifiers across multiple files,
and sometimes these identifiers are based implicitly on file
location rather than explicitly identified. This was something
that can be fairly challenging in TXL, especially in contrast
to our eventual solution. Due to these considerations, TXL
became less feasible as we delved deeper into the research and
work. Thus, we abandoned TXL in favor of a more imperative
programming approach.

It is important to discuss model transformation research in
the context of related work. The most related and popular
example of model transformation is the Atlas Transformation
Language (ATL) [21]. ATL uses a similar approach to TXL
but is more focused on model elements rather than the textual
definitions provided by grammars. We dismissed ATL for a
number of reasons, including some of the same reasons we
opted not to use TXL. While ATL performs model to model
transformations, it is not explicitly intended for underlying

model format transformations. ATL requires rigidity not possi-
ble given the proprietary nature of the Simulink model formats.
By using our own flexible language definitions focused on
Simulink models, which we defined empirically, we were able
to tailor our transformation accordingly.

Model transformation in Simulink models has been the
focus of previous research. In one example Denil et. al. [22]
applied rule-based model transformations to alter Simulink
models based on user-defined rules. Yang and Vyatkin[23]
also implemented model transformations between MATLAB
Simulink and Function Blocks. While both of these approaches
implement model transformations involving Simulink, they
differ from our work in that their goals either apply transfor-
mations within the Simulink model itself, not to the source or
format, or transform to some format outside of Simulink. As
such, the SLX2MDL approach provides a novel transforma-
tion by converting between Simulink model formats without
changing model contents.

There is work that considers models as graphs, most of
which focuses on UML models or traditional visual program-
ming [24]. For example, the Graph Rewriting and Transfor-
mation Language (GREAT) uses UML models as a means
of representing the graph grammars of the input and out-
put [25]. VIATRA similarly provides a visual automated
model transformation system for UML models [26]. Schurr
et al. summarizes approaches of graph transformation applied
to visual languages [27]. These approaches and the ones
that follow are focused almost exclusively on modifying the
graphs/models (semantics) specifically, changing/generating
their editors and environments, and performing analysis. The
most similar works to ours are approaches that perform
analysis on model/visual language syntax to transform it to
another form, for example, predicates, metamodels (graphs),
or behavior trees [28], [29], [30]. Ours differs in that we are
concerned explicitly with the syntax of the underlying textual
representations of the graphs/models and transforming it to
another textual format.

Ultimately, our choice to implement an independent trans-
formation approach for SLX2MDL rather than an existing
model transformation environment was based on the customiz-
ability afforded through our approach, and the ease in which
it can be adapted to new language features as the SLX-model
format evolves. Further, our performance results indicate this
approach scales well with model size.

VIII. CONCLUSION

SLX2MDL is a standalone, open, and publicly available
model transformation approach capable of applying consistent
transformations of Simulink SLX-syntax models to produce
equivalent MDL-syntax conforming models. This work is
necessary in an open and publicly available fashion for a
number of reasons including providing the ability to interact
with newer models in older Simulink versions as well as their
use in external tools that rely on the MDL format, such as
text-based clone detectors like Simone.

Through our 4-phase rule-based transformation involving
several iterations of extraction, transformation, and merging,
we are able to realize a model transformation approach based
on our empirically derived definitions of SLX and MDL
syntax. Using an established set of Simulink examples, we
evaluated SLX2MDL’s effectiveness to produce not only valid,
but functionally equivalent, output models conforming to the
MDL syntax. Through our evaluation using the internal and
proprietary conversion provided by Simulink as the ground
truth, SLX2MDL was able to produce a valid model 100%
of the time. Further, when determining the correctness of
the resulting models, it is able to achieve 100% correct
transformations, given our extended definition of functional
equivalence.

SLX2MDL’s performance was not a detriment to its con-
tributions, nor does the increased complexity of input models
have a significant impact on the performance. Through this
validation we determined an average execution time of 6.29
seconds per input model and a worst-case complexity of O(n).

A. Future Work

A natural extension of this work is to attempt to overcome
the limitations imposed by SLX2MDL’s inability to process
the contents of mxarray files, thus omitting some data from
the transformations. While this omission is acceptable for the
sake of structural transformation, ideally SLX2MDL ought to
handle all forms of input. Further, the ability to also correctly
map the configuration parameters from input to converted
output models is desirable in the long term. Both of these
potential extensions rely on the official definition of Simulink’s
proprietary algorithms and file structures. However, it may
eventually be possible to reverse engineer or simulate these
through further analysis. However, as we discussed, these
two omissions do not have significant impacts on the results
of SLX2MDL’s transformations as the resulting transformed
models are otherwise identical to those produced by Simulink.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1849632.

REFERENCES

[1] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,
“Models are code too: Near-miss clone detection for simulink models,”
in International Conference on Software Maintenance (ICSM). 1EEE,
2012, pp. 295-304.

[2] F. Deissenboeck, B. Hummel, E. Jiirgens, B. Schitz, S. Wagner, J.-F.
Girard, and S. Teuchert, “Clone detection in automotive model-based
development,” in /CSE. 1EEE, 2008, pp. 603-612.

[3] M. Stephan and J. R. Cordy, “A Survey of Model Compari-
son Approaches and Applications,” in International Conference on
Model-Driven Engineering and Software Development (Modelsward).
SCITEPRESS, 2013, pp. 265-277.

[4] A. Joshi and M. P. Heimdahl, “Model-based safety analysis of simulink
models using scade design verifier,” in SAFECOMP. Springer, 2005,
pp. 122-135.

[5] Y. Papadopoulos and M. Maruhn, “Model-based synthesis of fault
trees from matlab-simulink models,” in International Conference on
Dependable Systems and Networks. 1EEE, 2001, pp. 77-82.

[6]

[7]
[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

A. Chapoutot and M. Martel, “Abstract simulation: a static analysis
of simulink models,” in 2009 International Conference on Embedded
Software and Systems. 1EEE, 2009, pp. 83-92.

J. R. Cordy, “The txl source transformation language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190-210, 2006.

T. J. Biggerstaff, “Design recovery for maintenance and reuse,” Com-
puter, vol. 22, no. 7, pp. 36-49, 1989.

R. S. Arnold, “Software restructuring,” Proceedings of the IEEE, vol. 77,
no. 4, pp. 607-617, 1989.

J. R. Cordy and M. Shukla, Practical metaprogramming. Queen’s
University. Department of Computing and Information Science, 1992.
D. B. Staple, “Information about simulink mdl and sIx formats?”
May 2014. [Online]. Available: https://stackoverflow.com/questions/
23408186/information-about-simulink-mdl-and-slx-formats
MathWorks, Inc., “Save the model,” 2021. [Online]. Available:
https://www.mathworks.com/help/simulink/ug/saving-a-model.html

R. T. Narayanan, “Novice programmer to new-age application developer:
What makes python their first choice?” in ICCCNT. IEEE, 2019, pp.
1-7.

C. Chen, J. Sun, Y. Liu, J. S. Dong, and M. Zheng, “Formal modeling
and validation of stateflow diagrams,” International Journal on Software
Tools for Technology Transfer, vol. 14, no. 6, pp. 653-671, 2012.

J. Chen, T. R. Dean, and M. H. Alalfi, “Clone detection in matlab
stateflow models,” SQJ, vol. 24, no. 4, pp. 917-946, 2016.

A. L. Dominguez, “mdl2smv: A tool for translating automotive feature
models in matlab’s stateflow to smv,” https://cs.uwaterloo.ca/~aljuarez/
mdI2smv.html, 2012, accessed: 07-26-2020.

S. A. Chowdhury, L. S. Varghese, S. Mohian, T. T. Johnson, and
C. Csallner, “A curated corpus of simulink models for model-based
empirical studies,” in International Workshop on Software Engineering
for Smart Cyber-Physical Systems. 1EEE, 2018, pp. 45-48.

B. Adhikari, E. J. Rapos, and M. Stephan, “mdstepha/slx2mdl:
Initial version of slx2mdl,” Jul. 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.5117126

A. Boll, F. Brokhausen, T. Amorim, T. Kehrer, and A. Vogelsang,
“Characteristics, potentials, and limitations of open source simulink
projects for empirical research,” Software and Systems Modeling, vol.
tbd, no. tbd, p. 20pp, 2021, in press.

J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider, “Software
engineering by source transformation-experience with tx1,” in Interna-
tional Workshop on Source Code Analysis and Manipulation. 1EEE,
2001, pp. 168-178.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model
transformation tool,” Science of computer programming, vol. 72, no.
1-2, pp. 31-39, 2008.

J. Denil, P. J. Mosterman, and H. Vangheluwe, “Rule-based model
transformation for, and in simulink,” in Proceedings of the Symposium
on Theory of Modeling & Simulation-DEVS Integrative, 2014, pp. 1-8.
C. Yang and V. Vyatkin, “Model transformation between matlab
simulink and function blocks,” in International Conference on Industrial
Informatics. 1EEE, 2010, pp. 1130-1135.

S. Sendall and W. Kozaczynski, “Model transformation: The heart and
soul of model-driven software development,” IEEE software, vol. 20,
no. 5, pp. 42-45, 2003.

A. Agrawal, G. Karsai, and F. Shi, “A uml-based graph transformation
approach for implementing domain-specific model transformations,”
Software and Systems Modeling, pp. 1-19, 2003.

D. Varrd, G. Varrd, and A. Pataricza, “Designing the automatic transfor-
mation of visual languages,” Science of Computer Programming, vol. 44,
no. 2, pp. 205-227, 2002.

A. Schirr, “Application of graph transformation to visual languages,”
Handbook of graph grammars and computing by graph transformation,
vol. 2, p. 105, 1999.

J. W. Janneck and R. Esser, “A predicate-based approach to defining
visual language syntax,” in Symposia on Human-Centric Computing
Languages and Environments, 2001, pp. 40-47.

P. Bottoni, D. Frediani, and P. Quattrocchi, “A transformation-based
metamodel approach to the definition of syntax and semantics of dia-
grammatic languages,” in Visual Languages for Interactive Computing:
Definitions and Formalizations. 1GI Global, 2008, pp. 51-73.

L. Grunske, K. Winter, and N. Yatapanage, “Defining the abstract syntax
of visual languages with advanced graph grammars—a case study based
on behavior trees,” Journal of Visual Languages & Computing, vol. 19,
no. 3, pp. 343-379, 2008.

