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Abstract 

Model driven development (MDD) is on the rise in software engineering and no more so 

than in the realm of real-time and embedded systems. Being able to leverage the code generation 

and validation techniques made available through MDD is worth exploring, and is the focus of 

much academic and industrial research. However given the iterative nature of MDD, the natural 

evolution of models causes test case generation to occur multiple times throughout a software 

modeling project. Currently, the existing process of regenerating test cases for a modified model 

of a system can be costly, inefficient, and even redundant. 

The focus of this research was to achieve an improved understanding of the impact of typical 

model evolution steps on both the execution of the model and its test cases, and how this impact 

can be mitigated by reusing previously generated test cases.  

In this thesis we use existing techniques for symbolic execution and test case generation to 

perform an analysis on example models and determine how evolution affects model artifacts; 

these findings were then used to classify evolution steps based on their impact. From these 

classifications, we were able to determine exactly how to perform updates to existing symbolic 

execution trees and test suites in order to obtain the resulting test suites using minimal 

computational resources whenever possible. 

The approach was implemented in a software plugin, IncreTesCaGen, that is capable of 

incrementally generating test cases for a subset of UML-RT models by leveraging the existing 

testing artifacts (symbolic execution trees and test suites), as well as presenting additional 

analysis results to the user. 

Finally, we present the results of an initial evaluation of our tool, which provides insight into 

the tool’s performance, the effects of model evolution on execution and test case generation, as 

well as design tips to produce optimal models for evolution. 
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Chapter 1. Introduction 

1.1 Motivation 

Model-driven development (MDD) is an iterative form of software development, which 

presents challenges for test case generation. Due to this iterative nature, and the often minute 

evolution steps performed to enhance or fine-tune a software model, an accurate test suite for that 

model would require numerous changes during the development phases. 

The problem of automated test case generation has long been investigated [8] [9] [10] [12] 

[13] [23] [24] [25] [26], and many elegant solutions exist, but in the presence of model changes 

there is often no need to regenerate an entire new test case. 

Given the inefficiency of a complete regeneration of test cases after every evolution step, we 

aimed to reuse existing test cases in order to avoid any unnecessary generation. Working 

specifically with UML-RT models, we aimed to solve this problem by incrementally generating 

the test cases each time a model evolution step occurs. Instead of regenerating an entire test suite 

we concluded that examining the existing test cases and determining which tests need to be 

updated, removed or whether or not more tests were required might lead to a more efficient 

technique to generate test cases in the presence of model changes. 

In addition to the effective implementation, motivation for this project stemmed from the 

desire to better understand the effects of model evolution. By determining how evolution steps 

impact execution and test case generation, we are be better able to understand how models evolve 

over time, and how this evolution can be supported efficiently. 

1.2 Contribution 

This thesis makes the following contributions: an implementation of incremental test case 

generation, a classification of model evolution steps and their effects on test cases, and an 

additional method of analysis for model evolution, including test case selection. 
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Because we first required a list of rules pertaining to each model evolution steps we first 

needed to classify the effects of model evolution on test case generation, and therefore symbolic 

execution as an intermediary step. We were able to complete a study that gave conclusive results 

of how each evolution step (a full suite defined within the research) affected both execution and 

tests, and these effects were documented for use in the tool, as well as in related research. 

Using the classifications discovered, along with existing algorithms, a plugin for RSA-RTE 

was developed that successfully reuses existing test cases, making only the necessary 

modifications, thus reducing redundancy and improving efficiency. 

Industry models are often extremely large, and the execution of test suites can take in the 

order of days to execute; this is undesirable. Using our tree differencing approach, we are able to 

further examine symbolic execution trees and perform different types of test case selection to 

avoid the entire re-execution of a test suite. This technique allows the user to decide on more 

restrictive criteria for the tests, and select them appropriately, while still ensuring that the 

appropriate amount of testing occurs. This reduction in the total number of tests run can greatly 

improve productivity in an industrial setting. One such method of test selection is to run only the 

newly generated or modified tests, and to skip execution of unaltered tests, which is made 

possible through a notification to the user of which tests have been altered or newly added. 

Additionally, we explore a method of evolution impact analysis on execution. 

1.3 Chapter Overview 

In Chapter 2 we present some of the background that our work is based on. We discuss the 

tools and technologies that have been used, and their specific relationship to this project. This 

section makes reference to related projects and their relevance to this work. 

Chapter 3 serves as an overview of the research, providing a clear, high-level, description of 

the process. It includes a brief look at the methodology and theory behind the work itself. Finally, 

a summary of the work as a whole is presented. 

Chapters 4 through 7 outline the research conducted in detail. Specifically, Chapter 4 details 

the initial model selection and analysis for classification of model evolutions; results are 



 

 

3 

 

 

presented in terms of classifying these effects. Additionally, Chapter 4 looks into the initial test 

case generation and examination, providing insight into how it is used within the research. 

Chapter 5 focuses on the comparison of UML-RT models to determine the appropriate update 

action, specifically looking at the integrated differencing tool that is part of the existing 

development environment. Chapter 6 serves as a description of the actual update of symbolic 

execution trees and test suites. Chapter 7 discusses the development of the final tool using the 

work from the previous chapters. 

Chapter 8 provides a methodology for, and the results of our tool validation. Interesting 

findings are related and a number of claims are made about model evolution in relation to tool 

performance. 

Finally, in Chapter 9, we conclude with some observations, and summarize the work. We 

discuss some of the limitations and why they exist. Additionally, some possible future work is 

presented. 
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Chapter 2. Background and 
Related Work 

2.1 UML-RT 

UML-RT [7] is a real-time profile of the Unified Modeling Language (UML) [6], dealing 

specifically with modeling real-time interactions between a system and its surrounding 

environment. 

The main difference between a traditional UML model representation and a UML-RT 

representation is the notion of capsules. A capsule is a singular component of a system that may 

interact with other capsules via protocols; each capsule’s behaviour is modeled using a state 

machine. The main difference between UML-RT state machines and standard UML state 

machines is that UML-RT state-machines do not contain any orthogonal regions. 

Two of the main artifacts of a UML-RT model are State-Machine Diagrams and Structure 

Diagrams. The state-machine defines behavior, and the structure diagram defines structure and 

connectivity. As stated, capsules are connected to other capsules via ports, which use protocols to 

communicate with each other. Capsules may also contain other capsules; this nesting is shown in 

the structure diagram of the model as well as in the main class diagram. 

Transitions in UML-RT state machines are triggered by the occurrence of some event; the 

main type of event that triggers a transition is the receiving of a signal on a given port. Execution 

will wait until that specific signal is received on a port (which may be sent by an internal capsule 

or from an outside source); the state machine then executes the transition and execution 

continues. The next type of action that can trigger a transition is a timer (the introduction of the 

real-time aspect). Timers can be set to timeout after a given amount of time or recurring over a set 

interval, and this allows execution to react to time, in addition to signals. When a timer times out 

it sends a signal that is received by the state machine. 
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Because state machines require signals to be received to continue execution, it is evident that 

a state machine must be able to send signals as well. When connected to a protocol via a port, a 

capsule is able to send any of the predefined signals over the protocol to be received by a 

connected capsule. 

For those unfamiliar with software models, specifically state-machines, an initial concern 

may arise from the inability to add code to a model to influence behavior; however this is not an 

issue. As with traditional state machines, UML-RT state machines allow the addition of action 

code throughout execution. Developers may place action code on transitions, as well as within a 

state as either entry or exit actions. This ability allows developers to further control how a state 

machine influences execution. The most common purposes of action code are: updating attribute 

values, sending signals on ports, or setting timers, however more options are possible. 

2.1.1 Uses of UML-RT 

UML-RT lends itself to the modeling of reactive systems quite nicely since they are systems 

that respond (react) to external events, including the passage of time.  

Currently, much focus for reactive systems is on embedded systems. Current advances in 

technology such as mobile devices have led to a shift in focus that favours real-time modeling, 

and UML-RT is becoming more and more useful for this reason. 

The first example of real world use of UML-RT, as mentioned above, is within mobile 

devices and communications [21]. There is a tremendous focus on development for mobile 

phones, tablets, and similar devices, all of which are suited for development using UML-RT. A 

mobile device reacts to user input in the form of button presses, outside stimulus such as 

incoming calls, as well as internal timers. This example will be further explored in detail in this 

section. 

Another example of UML-RT’s use is in development of automobile software [20]. A piece 

of machinery with a number of disjoint, but connected, systems that need to communicate and 

function with a precise accuracy is a piece of machinery where the software needs to be well 

designed and tested. UML-RT provides the perfect development environment to do this, by 
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allowing simulation to occur on the model, and systematic testing as an attempt to avoid errors. In 

a safety critical system such as a brake control system in a vehicle, an error can cost lives. 

2.1.2 Mobile Phone Example 

In this section, we demonstrate the usefulness of UML-RT in modeling a real-time 

embedded system, specifically a mobile phone. This will be a simplified look at models for some 

of the behaviour of a mobile phone, in order to demonstrate some of the features of UML-RT in 

detail. 

We begin by looking at the notion of timers, which are used in mobile devices to 

automatically turn off a display after a period of time, among other tasks. When thinking of this 

in terms of states, you would have a displayOn state and a displayOff state. The displayOff state 

would have a transition to displayOn that is triggered by a number of things such as a button 

press, an incoming call, or any other notification. There would also be a transition in the reverse 

direction, triggered by the user pressing a specific button to turn off the display, or the timer 

timing out. For this particular example, Figure 2.1.1 shows a state machine with the two states 

and the transitions between them (button press and timeout). 

 

Figure 2.1.1 UML-RT State Machine showing Control of a Screen 
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Another feature of UML-RT is hierarchical states. The example that is used to demonstrate 

this shows the possible events that can occur from a home state when the display is on. The whole 

example takes place within the displayOn state described above. In this simplified example, we 

see that from the home state, execution can move into a dialing state by pressing a number button, 

a menu state by pressing the menu key, or an incoming state when a call is received on the 

network. From any of these states, execution returns to the home state by pressing the end call 

button. Figure 2.1.2 shows a very simplified version of events that can occur while the display is 

on. 

 

Figure 2.1.2 State Machine Showing Functionality When Screen is On 

A benefit of using UML-RT to model this type of device comes from the ability to model 

communication between contained systems. This is shown by signals coming in on the port 
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entitled userInput, and to this state machine, it is irrelevant what those signals mean or where they 

originated, just that it must react to them. However, on the development side, it can be quite 

relevant to know exactly what can send a particular signal, which is why design practices are 

extremely important. In this example, this can be shown through the containment of similar tasks 

occurring on a single protocol. Shown are both the userInput and network ports that connect to 

protocols dealing with these actions. Additionally, individual state machines are utilized to model 

individual components, focusing on certain behaviours, such as the examples above focusing only 

on the behaviour of the display. 

Relationships between capsules are modeled using a structure diagram. For this simplified 

example, we show a mobilePhone capsule, and within it are two subsystems: the display, and the 

userInputDevices. These two capsules are then connected via ports over a protocol.  

 

Figure 2.1.3 Structure Diagram for a Mobile Phone 
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Both of the contained capsules depicted in Figure 2.1.3 also have structure diagrams of their 

own that detail their internal structure, showing things such as the timer ports that are created, as 

well as the end points for any of the external protocols. For example, the port userInput would 

end inside of the display capsule at a state machine, meaning that the end point for signals on that 

protocol would be to influence behavior of the display state machine. Additionally ports can act 

as relay ports, connecting to internal capsules. For example, although not depicted above, there 

would be an external port on the mobilePhone capsule that would connect the phone to the 

network, this network port would then be connected to the display capsule; thus the signal is 

relayed by the mobilePhone to the display. 

2.1.3 IBM Rational Software Architect – RealTime Edition 

For this research the environment used for UML-RT development is IBM Rational Software 

Architect-RealTime Edition (IBM RSA-RTE) Version 8.0 [16], which is an Eclipse-based IDE. 

The implementation is a recent adaptation of Rational Software Corp.’s RoseRT [17] that was 

redesigned when IBM purchased Rational. 

RSA-RTE uses the frameworks defined for RoseRT, which include a full set of libraries to 

implement timing, logging to terminals, sending and receiving signals over ports, and all required 

functionality of UML-RT. 

RSA-RTE provides a GUI in which users can edit their models through a typical drag and 

drop methodology from a palette of model elements. Building on the success of the Eclipse IDE, 

RSA-RTE makes excellent use of the Properties tab to allow the user to modify all properties of 

any element. The Code View also allows the user easy access to input action code on transitions 

and entry and/or exit actions. 

With the environment being Eclipse based, the idea of projects carries over, and users can 

have multiple models per project and the encapsulation provides for excellent organization. 

Another benefit of RSA-RTE being Eclipse based is the ability to develop and use plugins to 

enhance functionality of the tool, which we have done through development of our tool, 

IncreTesCaGen. 



 

 

10 

 

 

 

Figure 2.1.4 RSA-RTE Environment (With Enlarged Features) 
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Figure 2.1.4 shows the full RSA-RTE environment. For those familiar with Eclipse this will 

look very similar, with a few differences. The main area (center) of this view is showing a state 

machine that contains five states and the transitions between them. The area on the top right is the 

palette, which contains the model elements that can be inserted into the state machine (state, 

transition, initial state, etc.). The area on the top left is the project explorer, which is native to 

Eclipse, and shows the organization of models into projects, and the elements of each model, 

including available diagrams. The bottom left area shows the properties view, where the user can 

edit properties of the currently selected object; in Figure 2.1.4 a transition is selected, and the 

current view shows the triggers for that transition. The last area of the tool shown on the bottom 

right is the code view window, which is where action code or guards on transitions can be 

written. As stated a transition is selected, and this transition does not contain any action code, 

hence the code view window is empty. 

 

Figure 2.1.5 RSA-RTE State Machine 
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Figure 2.1.5 shows a closer view of a UML-RT state machine as implemented in RSA-RTE. 

This view shows the full state machine diagram, including indication of entry code on many of 

the states, shown by a right facing arrow and the left half of a state, as well as action code on a 

transition being shown with a blue circle on the transition itself, as seen on the startCars 

transition located in the upper left area of the Working state. 

 

Figure 2.1.6 RSA-RTE Structure Diagram 

Figure 2.1.6 shows an RSA-RTE structure diagram as implemented by the tool. A blue oval 

shape indicates that a port ends at a state machine; the three blue ovals in the diagram each 

indicate that any signals received on those ports are handled by the state machine for the 

TrafficController. The two capsules shown are contained capsules of the TrafficController, which 

communicate with each other via the ports shown. Additionally note that there is a carsTimer 

port, with a white oval, and this is a special notation for ports such as timers or logs. 
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Figure 2.1.7 RSA-RTE Class Diagram 
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Figure 2.1.7 shows a main class diagram in RSA-RTE, showing all relations between all 

elements in the model. It details all of the capsules, the protocols they use (including 

multiplicity), containment of capsules, the ports on which a certain protocol is used, and all of the 

properties for each of these elements, such as signals for protocols, and additional ports and 

attributes for capsules. 

As an end result, it is important to note that the final artifact produced by RSA-RTE is 

generated code. The tool is capable of generating executable code (Java or C++) from the 

developed models. 

2.2 Symbolic Execution 

Briefly, symbolic execution is a method used to simulate execution of a piece of software, 

using symbolic variables/symbols in place of actual input values [13]. A program begins at an 

initial symbolic state, and as each line of code is symbolically executed, a test occurs to see if the 

symbolic state has changed, and if so a new state is recorded. This is repeated for the entire 

program and the output is a series of paths that execution can take, dependent on the potential 

values of the symbolic variables. 

When conditional statements arise within the code, this can often create branching within a 

program’s execution, and this is handled within symbolic execution by generating multiple 

outgoing paths from a given state, and from that point on in execution, path constraints are placed 

on the symbolic variable that led to that particular branch. 

Because of this branching, and the sequential order that is implied by the symbolic 

execution, the final output of symbolic execution is a tree, which is why they are known as 

symbolic execution trees, or SETs. 
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Figure 2.2.1 Example Symbolic Execution Tree 

Figure 2.2.1 shows a simple example method, and the resulting symbolic execution for that 

method. Execution begins at line 0, or the initial state with no path constraint; the two attributes 

are assigned a symbolic value, denoted by s1 and s2 in this example. Execution moves to State 1, 

which is representative of symbolically executing line 1, which declares and initializes a variable 

z to the value 0, which is reflected in that state. Upon reaching line 2, there is a condition on one 

of the values which happens to be assigned a symbol, and since the value at execution is 
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int method(int x, int y){ 

 int z = 0; 

 if (x > 0) 

  z = x; 

 z = z + y; 

 return z; 

} 
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unknown, a branch is created for both possibilities (greater than 0, and less than or equal to zero). 

This leads us to two possible symbolic states, State 2 or State 3, and each of these states update 

their path constraints (PC) to show the constraints on the symbol s1. Line 3 is only executable if 

execution reaches State 3, and this is shown by updating the value of z to the symbol assigned to 

x. In State 2 none of the values change. From this point on in execution, each line of code must be 

executed in each branch, so line 4 is applied to both State 2 and State 3 and the valuations 

updated accordingly; notice the path constraints carry down in the tree. This is repeated until 

finally we reach line 5, the return statement, where the symbolic states indicate what the value 

being returned is, based on the symbols. Note that the constraints on symbols then denote the 

domain of possible values for the symbol. 

In relation to the work of this thesis, recent work has been presented by Person et al. [22] on 

directed incremental symbolic execution. They present a study of the effects of program evolution 

on symbolic execution, which provides a solid background for our work, which includes our own 

version of incrementally performing symbolic execution. Their work deals with symbolic 

execution of source code through analysis of Control Flow Graphs (CFG), and not of state 

machines, but the resulting SETs provide the same expressiveness, and potential for test case 

generation as those utilized in this thesis. The procedure is very similar to the work we present, in 

that it takes as input an original CFG and a modified CFG, as well as a list of differences (either 

source code line or abstract syntax tree difference); these inputs are used to create a mapping 

between the base CFG and the modified CFG in order to incrementally symbolically execute the 

modified program by only exploring areas impacted by the changes made. 

2.2.1 Symbolic Execution of UML-RT Models 

Research is currently being conducted within our lab on symbolically executing UML-RT 

State-Machines [1] for the purpose of analysis of models [2] [3] rather than code. As with 

symbolic execution of code, when symbolically executing a UML-RT state machine, a symbolic 

execution tree (SET) is produced. A SET contains all possible execution paths of the model, 

based on symbolic inputs, as well as any constraints on those inputs. 
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Execution tends to become more complex with the shift to UML-RT models, as the non-

linear execution allows for more branching to occur within a tree based on possible triggers for 

transitions. One place where the idea of symbolic execution does become easier to understand is 

the parallel drawn between the states of the model, and the symbolic states of the SET. Each time 

a new state is entered within the model a new symbolic state is created, and the transitions 

between symbolic states become closely associated with the transitions between states in the 

UML-RT model. It is however important to differentiate between a state and a symbolic state; a 

state within a state machine is akin to a program location, whereas a symbolic state is an instance 

representation, that contains the current active location (which state machine state is currently 

active), a list of the current valuations of attributes, a list of the current path constraints, and a 

number of enabled outgoing transitions. While symbolic states are named by the same name as 

the state they represent, they are not equal to, and merely an instance representation of them. 

SETs in general are used for reachability testing, path constraint evaluation and of course 

test case generation [8][13]. Due to the nature of symbolic execution it is very useful in 

generating entire test suites for any given software, including the UML-RT State Machines that 

we are working with, which is why this medium was chosen for this work. 
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Figure 2.2.2 Example SET for a UML-RT Model 

Figure 2.2.2 shows an example of a SET that has been generated from a UML-RT state 

machine. It is a simple example which illustrates the close relation between the states of the 
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model and the symbolic states of the generated tree. It also shows how execution can branch due 

to differing transitions from a state, as well as conditional statements within action code. The 

assignment statement k = *rtdata; is the RSA-RTE syntax for assigning the data parameter 

from a signal that has been received. 

From State 1, there are two possible execution paths within the state machine (t1 or t2), 

based on receiving different inputs on a port, but the SET shows three paths, due to a branching 

caused by the conditional statement in the entry action of State 3 (code shown in the note). This 

creates two symbolic instances of State 3 that can be entered, one where the condition is true (k > 

5), and one where it is false (k <= 5). Any constraints on symbolic variables are recorded and will 

propagate through the tree. 

There are number of limitations imposed on the symbolic execution of state machines by the 

current implementation [1] that affect the expressiveness of the resulting SET. One such 

limitation is the handling of loops in the state machine, which can cause a state-explosion within 

the SET for even the simplest of loops. The way this was handled in the implementation was to 

only execute the loop a bounded number of times. Another effective solution to this problem is 

the use of subsumption of states. A state is said to be subsumed by a similar state higher in the 

tree when it shares the same state machine state, same values assigned to attributes, and the same 

or a less tightly constrained list of path constraints. What this essentially means is that if a state is 

subsumed by another state there is no need to continue expanding the tree at that point, as it will 

continue to expand in the same manner as from the state which subsumed it. This allows for state 

machines that do not have a definite end state to still result in a finite tree. 
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Figure 2.2.3 State Subsumption 
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Figure 2.2.3 shows an example of state subsumption in the generation of SETs. There exist 

only two states in the state machine; however one of them contains a self-transition that can 

execute multiple times. State 2 contains the same entry code that was found in State 3 in Figure 

2.2.2 meaning that the conditional statement occurs on each loop, branching out after each new 

symbolic state. It is easy to deduce that this would result in an infinite tree; however we show that 

a tree that is essentially infinite can be represented finitely due to the subsumption of states. 

Another limitation that is faced by symbolic execution of UML-RT models is the time 

aspect; it becomes near impossible to properly represent all possible interleavings of a timer 

expiring with any of the other possible events. The way this implementation deals with this 

limitation is to always assume the timer will timeout before any signal is received, meaning in a 

state where there are two or more outgoing transitions, one based on a timeout and the others on 

any input signal, the input signals will never be received as the timer will always be first, 

assuming it is initially set to timeout at some point. 

2.2.2 Uses in Incremental Test Case Generation 

Due to the ability to outline all possible execution paths, symbolic execution makes for an 

excellent method of generating test cases [8][13], but this will be discussed further in Section 2.3. 

In addition to its usefulness in test case generation, one of the main reasons symbolic execution 

was chosen as a medium for incremental test case generation was for its analysis properties [2]; 

the ability to examine execution paths and determine appropriate actions when modifying existing 

test cases is a valuable contribution. Throughout the classification of model evolution steps, 

symbolic execution provided an excellent vehicle to examine how model changes propagated 

through execution into test case generation. 

2.3 Model Based Testing 

Software, just like any other product, requires testing; nothing can be deemed correct 

without first testing its functionality. For physical products this can be as simple as using it in all 

of its intended uses, as well as the unintended ones to test for errors, and coming to a conclusion 
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that the product is satisfactory. In software this process is slightly more complicated, and often 

formalized; testing software has become an extremely important aspect of development. 

The emergence of model driven development has led to an increased demand for accurate 

model-based testing techniques. Since the primary artifacts for development are models, and code 

is generated from those models, to test the software code needed to be generated each time an 

update was made; this is problematic in MDD due to its iterative nature. The solution to this was 

to have the ability to execute models through simulation, and then to test the models as opposed 

to simply the code. This process became widely known as model-based testing. It is important to 

note that it is also possible to use the generated tests for the model to directly test the real system, 

as long as the code-generation step itself is trusted. 

The ability to test the model itself was a great advantage as it meant only needing to generate 

the code once full testing had been completed on the model, ensuring its correctness and 

completeness. This meant that primary testing was isolated to simulation of the model. 

In their work [9], Gnesi et al. discuss methods for a formal test case generation for UML 

statecharts. Their work is an excellent example of using models as the primary artifact for test 

case generation, and the similarities between UML statecharts, and the UML-RT models used in 

our work provides a validation of the usefulness of this type of test case generation. While their 

methodology differs in the absence of symbolic execution, the test suites that are developed are 

similar in nature to those of our work, presenting a series of inputs designed to pragmatically test 

execution of the statechart. Similar work dealing with generation of tests for statecharts is 

presented by Bogdanov et al. [12] demonstrating another formal testing notation for UML 

statecharts. They use the notion of a state cover (visit all states) to determine the necessary tests 

for a given statechart. 

Work even more closely related to ours is presented by Lee et al. [10], concerning test 

generation for event-driven, real-time systems, also using symbolic execution as a medium for 

analysis. Using symbolic execution of Modecharts to create a time annotated symbolic execution 

tree allows them to generate tests that not only react to inputs, but to time as well. In addition, 

they explore a different options for completeness of test suites using symbolic execution; noting 
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that the cycles created by reactive systems can allow an almost infinite number of possible input 

sequences, they explore both an “all-event-sequences” coverage criteria which generates tests for 

all sequences, as well as an “all-cyclic-event-sequences” coverage criteria, which ensures that all 

repeated event cycles are included at least once. The second method matches the type of 

completeness criteria explored within our work. This work provided an excellent basis for our 

initial test case generation by following their method of collecting all paths in a generated SET to 

form a complete suite of tests; this was a necessary step in incrementally generating test cases. 

Pasareanu et al. [11] present a comprehensive survey on work closely related to the work 

presented in this thesis, demonstrating the usefulness of symbolic execution in the automatic 

generation of test cases. While the survey presents significant amounts of work in relation to 

symbolic execution and testing of source code (as opposed to models) the techniques are useful in 

model-based testing using symbolic execution. State subsumption is further explained, along with 

another SET scaling technique known as path merging. The test sequences referenced for source 

code testing are a number of method calls, which in the code-generated from a model, is exactly 

what would be required to test the system, and this similarity demonstrates promise for our work. 

Another area of interest in model-based testing is the analysis capabilities provided by the 

process. In this thesis we discuss test case selection using SETs, which involves analyzing the 

generated SETs and selecting tests based on some given criteria. T. Jeron presents work on this 

topic [14], providing a methodology for symbolic model-based test selection. The work presents 

methods for conformance testing, and the completeness of test suites created through test case 

selection on tests generated for a model. 

2.3.1 Test Case Generation 

What constitutes a test case will vary from system to system, but in its simplest form, it will 

be a series of events that will lead to a certain execution path, given certain conditions. Values for 

attributes and parameters can be generated based on any constraints on them, and supplied to the 

program for a test execution. 
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It would be sufficient to examine a piece of software or a model and manually come up with 

a number of tests that will take the program through a number of different executions, but this 

process can often lead to overlooking a particular case that leads to an error in the software or 

even an ideal case to ensure functionality; additionally it may be impossible/infeasible. It is for 

these reasons that automated test case generation became an area of focus. The ability to provide 

a program or model of a system, and have a complete set of tests automatically generated to test 

all desired executions was something that was desired by software development teams. There 

exists a number of possible methods for generating test cases automatically which have been 

developed due to the understanding that generating tests by hand selection is error prone and time 

consuming. 

However, as with any new advance, it is not without its own issues. One of the major 

problems that exist in test case generation is the fact that because automation more often than not 

employs a systematic method, a full test suite must be generated each time, meaning that work is 

often done many times more than necessary. It is because of this that we chose to pursue 

incremental test case generation, which would allow automated test case generation to reuse as 

much as possible of existing tests during the iterative development cycle. 

2.3.2 Completeness of Test Suites 

One of the most difficult aspects of generating test cases is determining when a test suite is 

complete. Test cases can be designed to test requirements, and a test for each of the requirements 

may be sufficient. The question of what constitutes a complete test case is one that is often 

dependent on the project itself or on the development team. 

There are a number of completeness criteria, many of which are artifact specific. For 

example when working with code, tests can aim for statement coverage, block coverage, decision 

coverage, or loop coverage, each of which has some criteria to ensure that intended tests are 

covered. In MDD, this type of criteria is not possible as you are working with the models 

themselves; model-based criteria are needed. In a similar fashion to the code based testing, a large 

emphasis was placed on the artifacts, and working specifically for tests for state machines, two 

main types emerged: state coverage and transition coverage. 
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As their names suggest they simply require a number of test cases sufficient to ensure that 

each reachable state is reached and executed for state coverage, and similarly each reachable 

transition for transition coverage. It is for this reason that a more complete testing method has 

been proposed. 

It is desirable to be able to test each possible execution path through the state machine. This 

is where the usefulness of symbolic execution becomes evident; a symbolic execution tree 

contains every possible execution path (some simplifications are usually made). With the recent 

developments in symbolic execution of UML-RT state machines [1][2], we felt it was an obvious 

choice for this work. 

The completeness criteria chosen for our work is based on path coverage, which will be 

explained further in Section 2.3.3, but mainly focuses on leveraging the use of symbolic 

execution trees of UML-RT state machines to examine execution paths. 

2.3.3 Using Symbolic Execution to Generate Test Suites 

One of the forms of analysis on symbolic execution [1][2] is the automated generation of test 

suites for the UML-RT model. A test suite for a UML-RT state machine consists of a number of 

test cases, which are a series of inputs that will cause one finite execution of the state machine 

over some path. These inputs can be any number of things ranging from inputs over ports, or the 

expiration of a set timer; no matter the input, different interleavings will (likely) result in different 

executions. 

Our implementation of test case generation using symbolic execution is explained further in 

Section 4.2.1, but briefly, it consists of first symbolically executing the model using an existing 

tool [3], and then traversing through the generated tree to obtain a number of execution paths, 

based on inputs. For each of these paths obtained, a number of symbolic variables are provided as 

inputs, but in order for a test case to be executable; these values need to be replaced with concrete 

values. This is achieved through solving the path constraints on all symbolic variables using the 

constraint solver, Choco [15]. These solved values are then substituted in for any symbolic 

variables, thus the generated tests are executable on the model, well as the generated real system. 
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When using symbolic execution to generate test suites, the satisfaction of the completeness 

criterion becomes evident through the artifacts available; as a generated SET shows all possible 

execution paths through the state machine, generating a test suite using path coverage as the 

completeness criteria becomes the preferred choice. By creating a test for each possible path in 

the SET, we are guaranteeing that a test is created for every possible execution of the model; this 

is of course due to the nature of symbolic execution. 

Using the state machine and SET shown in Figure 2.2.2, we present an example of a test 

suite generated using symbolic execution. Given the generated SET, we observe there are three 

paths of execution through the three, which will be described using the inputs to move from one 

symbolic state to another, as the inputs are what make up each test case. The three paths and the 

associated path constraints are: 

1. default( )  protocol.in1(in1var0)  protocol.in1(in1var1) 

a. PC = {(in1var0 > 5)} 

2. default( )  protocol.in1(in1var0)  protocol.in1(in1var2) 

a. PC = {(!(in1var0 > 5)} 

3. default( )  protocol.in2( )  protocol.in2( ) 

a. PC = { } 

Now that each path is obtained, the symbolic variables need to be replaced by concrete 

values, so for each symbolic variable (in1var0, in1var1, in1var2) they are passed to the constraint 

solver, Choco [15], along with the path constraints for the current path of execution. Symbolic 

variables with no constraints are evaluated to a default value of zero. Since the path constraints 

are additive the list of constraints from any leaf node will be a full set of constraints for that 

execution. When each set of constraints is solved, and values determined for the symbolic 

variables, we substitute the concrete values into the paths of inputs and obtain the three following 

test cases: 

1. default( )  protocol.in1(6)  protocol.in1(0) 

2. default( )  protocol.in1(0)  protocol.in1(0) 

3. default( )  protocol.in2( )  protocol.in2( ) 
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Note that all three tests are different and yield different executions of the model. These three 

tests provide path coverage of the model, and ensure that a complete test suite is automatically 

generated, using symbolic execution as a means for testing. 

2.4 Related Work 

In addition to the background work required for this thesis, we will also present related 

works, consisting of similar efforts that demonstrate the state of the art in incremental test case 

generation. We present several works, and discuss similarities of, and differences with, the work 

presented within this thesis. 

Chittimalli and Harrold have presented their work on Recomputing Coverage Information to 

Assist Regression Testing [24], which shares motivational aspects with our work. Based on the 

realization that “Software systems continually evolve during development and maintenance.”, for 

many of the same reasons cited in our work, they felt the need to pursue a method of reusing 

existing test cases to save in the expensive process of regression testing. By leveraging the 

existing test cases, they aimed to reduce the load on test generation, while still yielding the same 

results. The main area of importance presented in their work is that performing the analysis to 

determine which tests will give the same results when run on a new version of a model, will allow 

test case generation (and running of tests) to occur for only impacted areas of the program. In 

their studies, they found that the time to run the selected tests, plus the time to run their tool 

(ReCover) to generate and select tests, was consistently lower than the time required of rerunning 

all tests for a new version by a significant amount. These validation results were very promising 

to us, showing that there is indeed potential for gain in incremental test case generation. 

Bates and Horwitz present work in incremental program testing using program dependence 

graphs [25]. As with our work, along with that of Chittimalli and Harold, motivation stems from 

the ability to reuse existing test suites to test a modified version of program. Based on some 

modification, they aimed to create “an adequate test suite for the modified program that reuses as 

many files from the old test suite as possible.” In addition to simply creating the adequate test 

suite, they also were able to identify the impact on the remaining tests, to determine whether or 

not they need to be rerun on the modified program. The similarity of goals was shown in their 
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aim to reduce the time required to perform the tests on a modified program, as well as to “avoid 

unproductive testing”, which parallels our motivation of reducing the redundancy that this 

creates. While their implementation and the testing environment vary greatly from ours, the 

validation is in the aims presented; the desire to reduce redundancy through leveraging existing 

test cases is an important area of focus. 

Uzuncaova et al. present a technique for Incremental Test Case Generation for Software 

Product Lines [23]. As with the other presented works, the main idea behind the implementation 

is similar, while the actual implementation differs greatly. The aim to reuse existing test cases 

exists, but more emphasis is placed on evolving the actual test cases to become representative of 

the new version, as opposed to simply selecting the test cases from the existing suite that still hold 

and filling gaps by generating new tests; the focus is on refinement using constraint solving. Their 

initial evaluation of the tool shows significant gains in the incremental method over the 

conventional method, suggesting again that the use of incremental test case generation as a test 

generation technique is beneficial, and the further exploration is warranted. 

Mirzaaghaei et al. [26] present similar work in their study of test case adaption to support 

evolution. In much the same vein as our work and the others discussed here, the motivation stems 

from the realization that as a program evolves, some test cases often become invalidated. The aim 

is to reuse knowledge from existing test cases to adapt the applicable test cases and to generate 

new ones when necessary. While the approach focuses on source code, as opposed to models as 

in our case, the goals and general process is largely the same. They follow a similar process in 

first determining the difference between the versions, and then adapting test cases using the 

appropriate evolution algorithms. An analysis of their implementation shows that they were able 

to adapt test cases with high accuracy and performance that is comparable to other test generation 

approaches. 

The main takeaway from reviewing these related works is that the motivation for 

incremental test case generation remains consistent across domains, and the need for this 

technique is not isolated to our work. The realization that the development process is iterative, 

and often leads to new versions of software rapidly being produced, has led to the understanding 

that reuse of existing test suites is imperative. While there are a number of different approaches 
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presented, the notion of selecting the appropriate test cases to carry forward to a new version of a 

test suite is seen across the implementations; these reused tests are also often examined to 

determine whether or not they need to be run on the new version. Also, the concept of generating 

new tests for only the impacted functionality is presented throughout these works; by determining 

the impact of the change, tests can be generated solely for the affected areas of the software. 

Lastly, the largely positive results obtained through evaluation of the presented implementations 

provides excellent validation that this technique is a worthwhile effort. 

Our approach was developed to provide a solution to these common goals, specific to UML-

RT and the environment in which we are working. The shared motivation and general technique 

allow the presentation of a worthwhile implementation to a confirmed problem in the test case 

generation area. 

2.5 Summary 

UML-RT [7] is a real-time profile of UML [6] used mainly for real-time embedded systems, 

due to its reactive implementation. It varies slightly from UML in the fact that it contains the 

notion of capsules, which contain state machines detailing behaviour, and structure diagrams 

detailing composition and structure. The increasing popularity of MDD and greater need for real-

time software has led to UML-RT becoming an emerging design method, and while there are a 

number of implementations of it, we have chosen IBM’s Rational Software Architect RealTime 

Edition [16] as the environment for our exploration and implementation. 

Symbolic Execution provides developers with a symbolic representation of execution, in the 

form of a Symbolic Execution Tree (SET) which can be used for a number of forms of analysis, 

test case generation being among them, and is the primary reason for of our use of symbolic 

execution. SETs provide an excellent starting point for test case generation for UML-RT models, 

as well as a built in completeness criteria in creating tests for path coverage.  

There are a number of methods for test case generation available, and some of these were 

explored, including the method that was chosen for our work, which is the use of the SETs to 

generate a series of inputs for the model, in order to achieve path coverage testing.  
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Throughout the chapter, a number of works were explored in relation to the work presented, 

in hopes of providing additional background and support of the relevance of the work completed.  



 

 

31 

 

 

Chapter 3. Overview  

3.1 Model Selection and Discovery Phase 

3.1.1 Input Test Model Selection and Types of Changes 

When evolving a model, there are (in the simplest form) three types of changes: adding new 

elements, modifying existing elements in some manner, or removing existing elements from the 

model. Thus, these are the three top-level categories of model evolution we will work with. For 

each of these categories of evolutions, we can manipulate the following model elements: states, 

transitions, parameters to inputs, entry and action code, and attributes. By applying each of the 

evolution categories (addition, modification, or deletion) to each of those elements of UML-RT 

models, we cover a number of possible evolution steps for any given model. This is how the 

evolution steps were chosen. 

To create the original models, we needed to create a number of models that would produce 

different sizes of SETs and test suites, and were of differing complexity. The necessity of these 

variations is that all of these factors contribute to the resulting test suites. Five models were 

created for this purpose and are described in detail in Appendix A – Example Models. 

3.1.2 Initial Test Case Generation and Examination 

Initial test case generation is necessary for two reasons: first the original test suite is used as 

a base for the evolution to the new test suite, and secondly we aimed to analyze the evolved test 

cases to determine the effects of evolution on test cases in order to implement these updates when 

possible. The initial test case generation is performed using the original SET (as defined in the 

previous chapter), by traversing through the tree in a depth-first manner. Beginning at the root, 

we traverse each possible path of the tree, moving from symbolic state to symbolic state through 

a series of transitions that are based on the transitions of the UML-RT state machine. As each 

transition is taken, the required inputs and events, and the constraints on the parameters are 

recorded in sequence for later use. At the end of each path, when a leaf node is reached, this 
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constitutes a full execution, and the path constraints on any input variables are solved using the 

Choco Constraint Solver [15]. The solved values are substituted in where the symbolic variables 

once were, and the ordered events are presented as a full test case. This is repeated for each path, 

and therefore the generated test suite will provide path coverage for all executions. 

The goal of the exploration of test cases and SETs for the evolved models is to collect 

knowledge about how test suites and SETs are impacted for certain model evolution steps. 

Beginning with an original model and the set of evolved models for it, we symbolically executed 

each model, and then proceeded to generate the test cases. The generated test cases were then 

compared with the original to determine the effects of evolution. These effects were noted, 

including any interesting patterns and anomalies. 

The differencing of the SETs also proved to be useful, as it allowed us to determine the 

highest point in the tree (conversely the earliest point in execution) that the evolved model differs, 

along all paths. This in turn allows us to find the tests which are changed and those which are not 

affected. Given that execution will occur in exactly the same manner for the remaining test cases, 

they do not need to be run again, and this can be a significant gain in the efficiency of testing. 

We were able to leverage this knowledge throughout development of the tool to assist in 

determining the appropriate action to take, and in writing the update functions for the evolution 

classifications. It is this initial generation and examination that provided us with the benchmarks 

that were needed for validation as well. 

3.2 Differencing UML-RT Models and Determining 
Appropriate Actions 

The first step necessary to incrementally generate tests for an evolved model is to determine 

exactly how that model has evolved. By differencing the models, using RSA-RTE’s [16] built in 

comparison tool, we are able to sort through the list of differences, and determine the appropriate 

action (if any) that will cause the existing SET and Test Suite to be representative of the newly 

evolved model. 
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The built in differencing tool reports a very comprehensive list of differences, so the first 

thing that was done was to filter out all differences that are irrelevant to the updating of the SET 

and the test suite. From that point, the differences are sorted based on their evolution 

classification, and are then operated on accordingly. 

3.3 Updating the Existing SET and Test Suite 

Based on the types of differences found by the differencing tool, there are a number of 

options that can be taken to make the required updates to the SET and Test Suite of the original 

model. The best case scenario would be to directly update the resources based solely on the 

information obtained from differencing the models, but this is also fairly uncommon. Another 

option is to perform partial symbolic execution, in order to obtain subtrees of the entire SET and 

combine these as necessary with the existing tree. Using this new tree, we can obtain the 

corresponding test suite by simply regenerating the test suite using the test case generation 

algorithm discussed earlier. The third possible option is to symbolically execute the new model, 

which is something we aim to avoid at all times, but in some cases may be the only option. Just as 

with the partial subtree generation, once the new tree is obtained the test suite is generated by 

traversing the tree and creating the series of inputs for each test. 

A goal of this work is to reduce the need for symbolic execution, as it is the most costly 

operation in the test case generation; the third option is certainly one that we wish to avoid at all 

costs, and the second option should be avoided whenever possible. 

3.3.1 Direct Updates 

When possible, it is our goal to be able to directly update the existing SET and Test Suite to 

be reflective of the updated model, as this removes any necessity to symbolically execute the new 

model. Without having to symbolically execute the model, there is a substantial reduction in the 

amount of time required for test case generation. 

This type of direct update is possible in a select few of our evolution classifications, but 

remains consistent across example models, and has proven to result in a significant gain.   
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3.3.2 Partial Symbolic Execution 

When possible, we aim to obtain the SET through partial subtree generation, which gives us 

an end result of an updated SET that is representative of the newly evolved model. The main use 

of this SET is for the generation of the new test suite, but it also can be used for analysis as well, 

in that differencing two SETs will show you paths along which changes occur, and can highlight 

important information about execution. 

The analysis phase is entirely optional, and is performed to provide additional information to 

the user. Given a SET for a model, and one for another model with one evolution step performed 

to it, we have two trees with what is assumed to be a large amount of similarity and a few select 

differences. Using a tree differencing algorithm where we compare the two SETs using a breadth-

first method, we are able to determine the highest level differences along all paths in the tree. If 

along a given path the leaves of both SETs are reached, there is no difference in that execution 

path. By the nature of execution trees, when a difference is found it is possible, and probable, that 

the change will propagate through the rest of that path. When a difference is found, it is recorded 

and the search continues with the rest of the tree until all paths have been fully explored. 

Once the new test suite is generated from the new SET, the test suite is compared to the 

original test suite to determine which tests in the new test suite are new or modified. The 

importance of this is that the tests that remain do not need to be rerun, as the execution paths they 

follow have not changed. This allows the user to only run the necessary test cases, essentially 

cutting back on the testing phase. 

3.3.3 Full Symbolic Execution 

This option is chosen when partial symbolic execution is impossible. Because of this the full 

SET must be generated from scratch, and it is then used for the same purposes described for the 

SETs generated via partial symbolic execution. 
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3.4 Tool Development 

The last thing that will be discussed in this chapter is the final tool development, and tying 

together of all of the research. Chapter 7 will outline this process, and highlight some of the 

features of the tool as a complete implementation. 

3.4.1 Application of Classifications 

As one of the main goals of the research was to classify the model evolution steps, it was 

imperative that the final implementation consider this. While the tool itself does not provide 

notification to the user of these classifications, the ability to use them in the incremental 

generation of test cases, as part of the decision making process applies them in a practical setting.  

3.4.2 Regeneration as Necessary 

This can be seen as an extension of the application of the classifications; however it merits a 

further explanation on its own. One of the main goals of any analysis software should be to 

determine when your tool is going to be effective, and when it is not. Our tool does exactly that, 

and in the instances where the use of any of our incremental techniques would not provide any 

improvement over the existing test case generation method or simply cannot create the same 

results, the tool reverts to using the original technique. 

3.4.3 SETs and Tree Differencing for Analysis 

Another benefit of drawing all of the research into a single tool is that the internal algorithms 

that are used in the test case generation process are useful in other ways. One prevalent example 

of this is the differencing of Symbolic Execution Trees, in that the information obtained from this 

process can be quite useful in a number of ways, including but not limited to: test case selection, 

and evolution impact analysis. 

3.4.4 Notification of Updates 

One of the major features of IncreTesCaGen is its reporting function. In addition to 

incrementally generating the new test suite, a number of differencing results are displayed to the 
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user that can be leveraged for a number of different improvements to the development cycle. One 

example that we will discuss further is the altered test case notification. 

3.5 Summary 

Although there are a number of different steps and options to the process of incrementally 

generating test cases, the process can be simplified and streamlined with ease, and that is what 

this section intended to do.  

The first step is to determine the difference between the original and evolved model; using 

the differencing tool we are able to determine the type of difference (add, modify, delete) and the 

model element that has changed. Given this difference, we select the appropriate action (direct 

updates to the SET and test suite, partial symbolic execution of the model, or full symbolic 

execution of the model). 

Once the new test suite is obtained, a differencing of test suites is performed to report to the 

user which tests have been affected by the update, thus informing them which tests need to be 

run. The full new SET and test suite are saved for future use and updates. 

The full process is outlined in Figure 3.5.1. 
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Figure 3.5.1 Describing Approach to Incremental Test Case Generation 

Title Desciption Inputs Outputs

Model Differencing

Use RSA-RTE’s internal differencing 

tool to identify differences between 

original and evolved model. 2 RSA-RTE Models 

List of Differences 

between Models

Selection of Action

Based on difference, select best 

option. Current Difference Decision of Action

Direct Updates

Directly update the SET and test suite 

using information available from 

differencing models

Original SET and 

Tests Updated SET and Tests

Partial Symbolic Execution

When not possible to directly update, 

second preference is partial symbolic 

execution.

Original SET and 

New Model New SET

Full Symbolic Execution

As a last resort, we may need to fully 

symbolically execute the entire 

model. New Model New SET

Test Case Generation

A full test suite is generated for the 

newly obtained SET. New SET

New Generated Test 

Suite

Loop

Continue looping if more differences 

remain. List Of Differences

Decision of whether or 

not to loop again

Test Suite Differencing

Given the new test suite, we 

difference it with the original test 

suite and determine which of the test 

cases have changed or been added or 

removed, so we know which tests 

need to be run, and which do not.

Original and New 

Test Suites 

List of added and/or 

removed tests
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Chapter 4. Model Selection and 
Discovery Phase 

4.1 Input Test Model Selection and Types of Changes 

4.1.1 Standard Evolutions Steps 

In order to proceed with incremental test case generation, the first step was to define 

“evolving a model”. The following are the list of questions that we needed to answer: What 

defines an evolution? How atomic would these changes be? What changes will we examine? 

Initially, we decided to look specifically at what types of actions can occur to a model. In the 

simplest form, there are essentially only three things a developer can do to a model: we can add a 

new element to the model, we can modify an existing element in some manner, or we can delete 

an existing element from the model. These three high level actions became the basis for our 

classification of standard evolution steps, but more was needed to constitute a classification. 

When dealing with UML-RT models, the items that can be added, modified, or deleted are 

the model elements, which are: states, transitions, entry code, transition action code, triggers to 

transitions, and parameters on signals. There are other elements to UML-RT models, but these 

elements were the ones chosen for this research, as they are predominant elements. 

Once we defined the three actions and a number of elements they can be performed on, we 

then created a number of plausible evolution steps that were used throughout the research for 

testing, implementation and validation. Some were purposefully excluded due to their similarities 

to existing examples, and in one case (addition of action code) two examples were used as adding 

code to send an output signal, and adding code that alters the value of an attribute were thought to 

be significantly distinct. 

Table 1 defines the 14 model evolutions that were used throughout the research. 
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Table 1 Model Evolution Steps Used 

Evolution Step Description

1. Add State

Add a new state to the state machine. This alone 

has no effect on execution, so in order to proceed 

with testing, a single transition to this state is 

added as well, meaning that a new reachable 

state has been added.

2. Modify State

An existing state is modified in some manner. For 

these particular examples, this refers to a 

renaming of the state.

3. Delete State

A state from within the state machine is deleted. 

Any transitions to or from this state are 

automatically deleted along with it by the tool.

4. Add Transition

A transition is added between two existing states 

within the state machine.

5. Modify Transition

An existing transition is modified in some 

manner. There are two types of modifications 

that were used to demonstrate this evolution: a 

change of the transition's target state, and a 

change of the trigger for that transition.

6. Delete Transition A transition is deleted from the state machine.

7. Add Entry Code to a State Entry code is added to an existing state.

8. Modify Entry Code on a State Existing entry code is modified in some manner.

9. Delete Entry Code from a State

Existing entry code is removed from a state 

entirely.

10. Add Action Code on a Transition 

(send output)

Action code is added to a transition that will send 

output on a protocol.

11. Add Action Code on a Transition 

(modify val)

Action code is added to a transition that will 

update the value of one of the attributes of the 

capsule.

12. Add a Parameter to a Signal

A parameter is added to an incoming signal of a 

protocol. The signal initially was a void signal, but 

an interger parameter is added.

13. Delete a Parameter from a Signal

The parameter is removed from an incoming 

signal of a protocol. The signal initially had an 

integer parameter, but is now a void signal.

14. Modify Initial Value of an 

Attribute

The initial value of one of the capsule attributes 

is changed.
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4.1.2 Original Models Used 

The next step was to build a suite of models on which to apply these evolutions. In 

considering this, we factored in things such as model size, model complexity, and resulting test 

suite size. We also had to determine how many different models we were going to work with. 

In the end we ended up choosing five models that are explained in full detail in Appendix A 

– Example Models. The models varied in the criteria mentioned above, and were chosen as a 

reasonable representation of generic models. Some were arbitrarily simple, while others were 

artificially complex, and one was aimed at simulating a real life scenario. 

It is clear that these five models are not a full representation of all models in existence, but 

we feel that they provide a sampling of the types and complexities of a number of models that we 

would see in use. It is clear that more examples would always be better, and real life examples 

would be excellent, but for an initial evaluation of our work, we feel that they are sufficient. 

4.1.3 Applying Evolutions 

With a set of initial models and the evolutions steps decided, the next step was to apply these 

14 evolutions to each of the five models, thus creating 70 newly evolved models that would be 

used for examination in order to determine effects of evolution, and later for validation of the 

tool. 

The specific evolutions that were performed on each model can be found in Appendix A – 

Example Models. It outlines for each model and evolution step which update was chosen; 

additional information includes the element which was updates, along with the new values for the 

changed attribute. 

4.2 Initial Test Case Generation and Examination 

Although the goal of the tool and the research as a whole is to avoid the full symbolic 

execution and test case generation, it was necessary to perform for exploratory purposes and to 

determine how to implement the updates. For each of the evolved models we used the symbolic 

execution engine to obtain the SET, and then used the test case generation engine to produce a 
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complete test suite. For each evolved SET and test suite, they were compared to the originals, to 

determine the exact changes for a given evolution step. The hope was to discover patterns across 

the five different models for each evolution step meaning that it affected symbolic execution and 

testing consistently. 

4.2.1 Initial Test Case Generation 

In this section we will discuss the methodology that was used for generating the initial tests, 

and how we arrived at the decisions that were made. 

There are a number of different definitions of a test case, or test suite, and the first thing we 

needed to decide was which of these fit our criteria, and what would constitute a test case/test 

suite in the context of incrementally generating test cases for UML-RT models. Recall that when 

performing background research we had previously determined that path coverage was the best 

option for a completeness criteria for our test suites due to the ease of determining this from a 

SET. From there we had to determine the method of testing and also consider options for 

implementation, allowing for the incremental generation to take place and make sense within the 

context. 

Since the models are representations of real-time reactive systems that function based on 

reacting to events such as timers and input signals, a test case for a capsule model would need to 

be an ordered series of events. This would include parameters on the input signals and the input 

values if applicable, as well as timers timing out at given times, which are special input signals 

from an internal framework port.  

However, in addition to simply providing outputs and observing the behaviour (execution 

passes through the states as expected), the added ability of UML-RT to send outputs over ports 

allowed us to also produce expected output for each input, such that each output (or set of 

outputs) is associated with the input which caused it to be sent.  

Given all of these decisions, we finally settled on the definition of test cases and test suites 

that we would be using for the research. We would be performing input testing, with output 

validation, using SET path coverage as a completeness criterion.  
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In order to implement our “test suite” the first thing we did was create an Ecore model [18] 

of a test suite that would be used for our experiments. The added bonus of creating an Ecore 

model was the automatic generation of the classes, and a visual editor. 

The model shown in Figure 4.2.1 depicts the class diagram for a test suite. A TestSuite is 

made up of some number of TestCases, each designated by a CaseNumber. A TestCase is some 

number of ordered Inputs, which can be either a signal over a port, a timer, or the default input 

which is automatically assigned to the transition from the initial state; these special inputs are 

assigned as the signal, with a null value for the port. Each Input may also have a parameter, 

which is an Expression, meaning it can either be a Constant or a SymbolicVariable. The final test 

cases only make use of constants as parameters, as symbolic variables are meaningless in test 

cases. The SymbolicVariables are used throughout the generation process, and stored in the 

unsolvedParam field for later use. The same is also true for values of Outputs. During the 

generation process, the unsolvedParm values are solved using the constraint solver Choco [15], 

and the actual values are given as parameters. 

 

Figure 4.2.1 Ecore Model of a Test Suite 
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In the next section, we will briefly explore our implementation of test case generation, and 

provide an example of a test suite. 

4.2.2 Implementation 

Figure 4.2.2 shows the generate method, which is the main method called to generate a test 

suite. The algorithm begins with the initialization of variables, and instantiating the test suite 

itself (lines 2 – 7). At this point, the gen method is called, which will be described in detail later 

in this section, but it is used to generate the tests for the provided tree (line 9). After the test suite 

is generated, for each of the test cases (line 11), the Choco constraint solver [15] is used to solve 

the constraints on symbolic variables (lines 12-14), and these variables are then applied to the test 

case (line 16), meaning the solved values are substituted in for the symbolic variables. Finally the 

completed test suite is output to a file (line 19). 

 

Figure 4.2.2 generate Algorithm to generate tests and solve constraints 

Figure 4.2.3 shows the gen method, which is a recursive method that is used to generate the 

test suite for a given SET. The parameters to this method are current, which is a state within the 

SET (initially the root state), and currentCase, which is the test case up until the current state, 

along the path taken to get there (line 1). The first thing the recursive algorithm does is create a 

new test case to represent any new tests generated by branching in the SET (line 3). From here 
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there are two things that can happen: there are no outgoing transitions in the current state (lines 5-

21), or there are outgoing transitions to explore (lines 23-39).  

 

Figure 4.2.3 gen Algorithm for recursively generating test cases 

If there are no further outgoing transitions from the current state, this means that execution 

has reached a leaf of the tree (the end of an execution path). The first thing done here is the 

creation of a Choco Model object, which is a container for the path constraints (line 7). For each 

constraint in the leaf state (line 9), we add that constraint to the model to be solved later (lines 10-

16), and finally, we add the current test case to the test suite (line 19). 
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If there are outgoing transitions, this means that there are more inputs to add to the path, and 

more to explore of the SET. For each of the outgoing transitions from the current state (line 25), 

we create a local copy of the test case up until the current point in exploration (lines 27-29), and 

then we add the input signal for the outgoing transition to the local copy of the test case (lines 31-

33), and then recursively generate the remainder of that path by calling the gen method (line35). 

This recursive method allows for a depth-first search of the entire SET, and results in 

complete path coverage, and a test case for each of the possible paths of execution. 

4.2.3 Example Test Suite 

To better understand our implementation of test suites, an example will help provide clarity. 

Using the Model 2 from Appendix A – Example Models as our working example, the first artifact 

would be the SET for that model. It is a fairly simple model, and the SET is also quite simple.  

Figure 4.2.4 shows the generated SET for the state machine. The number of paths (four) is 

important to note, because this will also be the total number of test cases generated by the tool. 

Before jumping directly to the generated test suite, let us explore the SET further. The first thing 

to note is that from the initial state there is only one possible transition, meaning that every test 

case will begin with the default transition as an input.  

From the waiting state, which is reached by taking the default transition, there are four 

possible options, meaning there are four branches that need to be explored. Within the algorithm, 

this would translate to four local copies being made of the single transition test case, and 

recursively exploring these four options. One of the options leads to a shorter path than the others, 

containing only one more additional transition/input, making its total length two inputs. The 

others all contain three inputs. 

Taking all of these observations into account, it becomes clear exactly what the test suite 

should look like for this SET: four test cases, three of length three, and one of length two, and all 

tests will begin with the default transition. In larger more complex SETs it becomes less clear 

what the resulting test suite will look like, but the theory behind it remains the same. 
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Figure 4.2.4 SET for Model 2 

Figure 4.2.5 shows the test suite for Model 2, generated by our test case generation 

algorithm in textual form. Looking closely at it, we can confirm that the observations made from 

the SET have held true. The test suite contains exactly four test cases, three of which contain 

three inputs, and one that contains two inputs. Additionally they all begin with the default signal 

as input. 

 

Figure 4.2.5 Generated Test Suite for Model 2 
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4.2.4 Test Case Examination 

With an implementation for test case generation complete, it was time to begin exploring the 

effects of model evolution on test cases, and the best way to accomplish this was to compare the 

evolved test suites to the original test suite, noting differences and comparing these for 

consistencies across models. 

This was done by implementing a straightforward test suite comparison algorithm that would 

compare each of the original test cases to each of the modified test cases until either (a) an exact 

match is found, or (b) all are explored and no match is found. If no match is found, the test case is 

noted as not being in the new test suite, and therefore removed. The exact same process is 

repeated for each test case in the modified test suite, to determine which test cases are not in the 

original test suite, and therefore added. One thing to note is that this does not highlight test cases 

that are modified; in such a case, it is listed as removed from the original and added to the new 

test suite, so this comparison requires further examination. 

Much like the tree differencing this is used as an exploratory step to help determine 

classification of the effects of model evolution steps on test suites, but is also used in the final 

tool as a method of reporting to the user which tests have changes and/or remained the same. This 

reporting step is discussed further in Section 4.2.5. 

During this exploratory phase of the research the differencing is used to highlight effects on 

test suites, noting whether the evolution step affected all test cases, some particular subset of the 

test cases, or none of the tests. These observations were recorded and further explored to 

implement the updating function of the tool. 

It was during this phase that the results began to show what we were hoping to see, and there 

were patterns that began to emerge across models. These findings are discussed in Section 4.3. 

4.2.5 Test Case Reuse 

As stated, in addition to being a useful comparison tool to examine effects of model 

evolution, the differencing of test suites is useful for the reuse of existing test cases. Once a new 
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test suite is obtained, by comparing the new test suite to the original, the user is presented with a 

list of test cases that do not appear in the original test suite. 

This list identifies the reduced number of tests that are required to be run on the new model, 

assuming the original test suite was run on the original model. The reasoning for this is that if the 

original test suite was successfully run on the original model, the evolution step performed has 

not affected the execution paths tested by the remaining test cases, and to test them again would 

be redundant. By running only the newly generated tests, we are still ensuring the correctness of 

the model, but are not running any unnecessary tests. In large industrial models, this could save 

hours of testing during each iteration of development, as only a small fraction of tests may need 

to be run with each evolution as opposed to an entire test suite. 

4.3 Findings 

In this section, we present the findings of the exploration of the effects of model evolution 

on both SETs and Test Suites, and conclude by presenting three possible classifications for the 

model evolution steps presented in Section 4.1.1, and which classification each of them falls into. 

We began by looking at the impacts of the changes on the SETs and Test Suites with a goal 

of grouping the evolution steps based on the type of operation required to make the update to the 

original SET and Test Suite. The most interesting of our findings was that the deletion of states 

and/or transitions has a predictable effect on the SET and Test Suite of the evolved model; 

subtrees of the SET are completely removed at the point where the removed state or transition is 

found. This finding meant that the updating of the SETs and Test Suites for these types of 

evolution steps (numbers 3 and 6) would not require any new symbolic execution, and simply 

only removing portions of the SET and parts of the existing test suite. 

There are two other evolution steps of interest that stand out from the others due to the fact 

that they also do not require symbolic execution to make updates to the SET or the test suite. The 

first of these is number 2 (the modification of a state by renaming it). Since the name of the state 

has no effect on the execution, the test suite does not change in any way, and the only change 

needed to the SET is to replace any occurrence of the original state name with the new state 
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name. The second such instance is number 12 (adding of a parameter to an input signal). This 

action alone does not affect the execution, as the parameter has not yet been referenced in any 

guards or action code; because of this, any time it is referenced in test cases, its value is 

insignificant, and can thus be assigned the default value of zero each time. This is done to both 

the SET and the Test Suite, globally replacing any occurrence of the input signal, which 

originally had no parameter with the same input signal with parameter of an unconstrained 

symbolic variable, replaced in the test cases with the default value of 0. 

This classification aims to determine, when producing the updated SET and Test Suite, 

whether it requires a direct update to the existing artifacts, partial subtree generation (generating 

some subtree to replace existing subtree), or regeneration of the whole SET. Based on these three 

tool-specific classifications, Table 2 outlines which model evolution step falls into which 

category. It is worth noting the fact that only one evolution step fell into the full regeneration 

classification, this is significant, meaning that it is the only time that a full regeneration is 

consistently required. These classifications were used as a basis for the decision making shown in 

Figure 3.5.1. 
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Table 2 Classification of Update Operations 

4.4 Summary 

This chapter aimed to highlight the initial discovery phase for the research. It began by 

presenting the evolution steps chosen for exploration, and the five example models that we would 

be applying these evolution steps to, and performing the analysis and examination on. 

 From there, we presented our implementation of test cases, by providing our definition of 

a test suite in the context of the research, and showing the Ecore class diagram representing a Test 

Suite. The algorithm used to generate test suites from a given SET is presented and explained in 

detail. 

 The next portion of the chapter dealt with comparing test suites, and how this was used 

both in discovery, and in the final implementation as a method of test case reuse. The fact that 

Evolution Step Classification of Update Operation

1. Add State Partial Subtree

2. Modify State Direct Update

3. Delete State Direct Update

4. Add Transition Partial Subtree

5. Modify Transition Partial Subtree

6. Delete Transition Direct Update

7. Add Entry Code to a State Partial Subtree

8. Modify Entry Code on a 

State Partial Subtree

9. Remove Entry Code from a 

State Partial Subtree

10. Add Action Code on a 

Transition (send output) Partial Subtree

11. Add Action Code on a 

Transition (modify val) Partial Subtree

12. Add a Parameter to a 

Signal Direct Update

13. Remove a Parameter from 

a Signal Partial Subtree

14. Change Initial Value of an 

Attribute Full Regeneration
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comparing test cases can determine which tests need to be run provides a huge gain in industrial 

models, preventing the redundant rerunning of unaffected test cases. 

Finally this chapter presents our findings of comparing the original model, SET, and Test 

Suite to their evolved counterparts. We present the three classifications of the impact of model 

evolution effects, specifically the updates required of the SETs and Test Suites: the ability to 

directly update SETs and test suites (Direct Update), the need to perform partial symbolic 

execution to generate subtrees of the entire tree (Partial Subtree), and the need to regenerate the 

entire SET (Full Regeneration). 
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Chapter 5. Differencing UML-RT 
Models and Determining 

Appropriate Actions 

This chapter will outline the first steps taken in incrementally generating the SET and Test 

Cases for an evolved model: comparing the two models, and determining the appropriate action 

to take. The first thing we will explore is comparing the two models, looking at the tool we use 

and the way results are presented to the user. From there we will discuss the examination of these 

results, and the decision engine that is used to determine which action to use.  

5.1 Differencing Tool 

The first step in incrementally generating test cases is to determine which evolution step (if 

any) has been performed.  

While exploring the development environment for UML-RT, Rational Software Architect 

Real-Time Edition (RSA-RTE) [16], we discovered that it has its own implementation of model 

differencing that is built upon the EMF Compare [19] framework, with additions for the real-time 

content. In order to reduce the workload of developing our tool we explored this further in order 

to leverage the existing tool’s differencing power. We were pleased to discover that the default 

difference tool was able to provide us with all of the necessary details to determine exactly how a 

model version differs from a previous version. 

The compare function takes in two models, and returns a list of differences that can be 

iterated over, and each difference explored. Since the differencing tool can provide some 

differences that do not affect the SET or test suite in any way, such as visual changes to the model 

(line sizes, shape dimensions, etc.), these are first pruned from the list, and the remaining 

differences are explored further. 
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Each difference in the list contains a difference type, which can either be addition, change or 

deletion, which aligns perfectly with our evolution steps. The second thing that each difference 

contains is a pointer to the actual item of difference in each model; this allows us to determine 

what has changed. Lastly, each return difference contains a reference to the original artifact of 

change and the newly updated artifact, either of which may be null in the case of addition or 

deletion. 

5.2 Selection of Action Based on Differences 

With a pruned list of differences provided by the built-in RSA-RTE differencing tool, the 

next step is to determine which action(s) should be performed to obtain the updated SET and test 

suite. For this we return to the two sets of classifications obtained in Chapter 4 and identify which 

type of update we will need to perform. 

If the first difference returned from the tool outlines that there is an addition of a new 

transition, then the method addTransition is called, which implements a version of the partial 

symbolic execution to generate a new SET and generates a test suite. The method is provided 

with the reference to the added transition for exploratory purposes; the same is true for any of the 

other differences. 

There are also a number of differences where there is a direct overlap in what must occur. 

The way that these overlaps were discovered was by examining the classifications and finding 

areas of commonality between like elements. For example, the evolutions for adding entry code, 

modifying entry code, and deleting entry code are all of the same classification (partial subtree), 

and all pertain to the same element; this commonality means that the implementation for all three 

of these is exactly the same, and only one method was required. The same is true for the two 

additions of action code, since they both require the same updating of the SET and test suite. On 

the other hand, there are actually two different implementations for the modify transition 

evolution step, as there are two different types of differences that can be reported by a 

modification to a transition: the target and the trigger may be changed, and due to this there are 

two methods that needed to be created to perform these two types of updates. 
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The implementations of the updates themselves will be discussed in further detail in Chapter 

6; however it is important to note that whenever possible, when creating the decision engine, we 

grouped similar differences together, so as to reduce the amount of work later on in the process. 

Another possibility during this phase of decision is that the differencing tool may have 

returned multiple differences for a pair of models; one such example of this would be the removal 

of a state from a state machine. When a state is deleted, the transitions to and from this state are 

also automatically removed; therefore a state with one incoming and one outgoing transition that 

is deleted would result in three differences being reported by the tool. This is handled by iterating 

over the list of differences individually and performing the required updates for each change. 

There is also some built in optimization to avoid redundant work; take for example the state 

deletion discussed previously. Each time a deletion of a transition is reported, the source and 

target are checked to determine if either of them is equal to a deleted state; if so, the difference is 

skipped, as it will be dealt with by the update function for the deleted state. The iteration over this 

list of differences allows for multiple smaller changes to occur, but they are still handled as 

individual atomic changes. 

5.3 Summary 

This chapter highlighted the first step in incrementally generating SETs and test cases, which 

is to determine the differences between the original model and the evolved model, to determine 

the appropriate action wherever possible. 

This is done by using the built-in comparison tool within RSA-RTE, which returns a list of 

differences that can be iterated over, and operated on as necessary. 

Also as part of this phase we used the classifications provided in Chapter 4, to attempt to 

group like differences together into the same update functions, to reduce the workload later on in 

development. One such example of this is the addition, modification, or deletion of state entry 

code, all being part of the same classification in both sets, and requiring the same updates to the 

SET and test suite.  
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Chapter 6. Updating the Existing 
SET and Test Suite 

Given the classifications defined and observed in Chapter 4 and the differences discovered in 

Chapter 5, we were finally able to focus on the main area of the work, updating the SET and the 

test suite from the original model so that they are reflective of the new evolved model. 

As previously presented, there are three possible ways of updating the SET and test suite for 

an evolved model: directly updating if possible, performing partial symbolic execution on the 

necessary portions of the model and generating tests from the resulting combined tree, or a full 

regeneration of the SET and generating tests from the new tree. 

The following sections will discuss these options in more detail, while also providing listings 

of the methods that are used to implement the updates. 

6.1 Direct Updates 

This option is by far the most favourable as it removes the necessity for any symbolic 

execution, which is the most expensive portion of test case generation.  

From the classifications discussed earlier, it was clear that there are exactly four updates that 

fit into this category. These four evolution steps are: modification of a state (particularly state 

name), deleting a state, deleting a transition, and adding a parameter to an input signal. Each of 

these requires a very different approach, and each will be discussed within this section. 

6.1.1 Modify a State 

A modification to a state simply means changing the name of a state to reflect some update 

to the model. This is, by itself, not a large change, but is indeed a common change as a model 

evolves; the name of a state is likely to change to reflect functionality. 
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Figure 6.1.1 shows the changeStateName algorithm that is used to make the necessary 

updates to the SET. Since there is no change at all to the test suite, this is completely ignored. The 

algorithm recursively explores the SET in a depth-first method, checking each state name, and if 

it finds the name that has been changed, it replaces it with the new one, and then continues 

exploring. 

 

Figure 6.1.1 changeStateName Algorithm 

6.1.2 Delete a State 

Deleting a state from a model means that execution may no longer reach that state, and 

therefore any test cases that result in passing through that state are no longer valid. To update a 

SET to reflect this, we explore the tree until a symbolic state in which there is an enabled 

transition to a symbolic state matching the deleted state is found, and remove the transition to that 

symbolic state from the SET, and therefore everything below it in the tree. This process is 

repeated for the entire tree and the resulting SET is representative of the evolved model. To make 

the necessary updates to the test suite, when a difference is found, and subtrees are deleted, a call 

is made, passing the path to the symbolic state to a helper method that removes the remaining 

inputs from any test case that begins with inputs matching the path to that point. This however, 

typically results in duplicate test cases in the test suite, but this is handled by the calling function, 

which goes through the test suite and removes any duplicates. 

Figure 6.1.2 shows this process in more detail. 
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Figure 6.1.2 deleteState Algorithm 

 

6.1.3 Deleting a Transition 

This update is very similar to deleting a state, in that a deleted transition can no longer be 

taken, so therefore any time that exact transition is taken within the original SET, it is then 

removed in the updated SET. The process for finding it is the same as any other, in that we 

recursively traverse the SET until the difference is found. 
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Figure 6.1.3 depicts the algorithm used to update the SET and Test Cases when a transition 

has been deleted. Much like the state deletion, the difference is found, and any subtrees that take 

the deleted transition are deleted, with test cases being shortened as necessary, and the calling 

method removes any duplicates. 

 

Figure 6.1.3 deleteTransition Algorithm 
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6.1.4 Adding a Parameter 

The fourth and final evolution step that allows for direct updates to the SET and test suite is 

the addition of a parameter on an input signal. This is a uniform change, meaning that it happens 

for every occurrence of the signal that it has been added to, regardless of context. This means that 

updates can be applied directly to the SET and test suite without needing to perform symbolic 

execution to determine the effects of the update. 

Figure 6.1.4 outlines the algorithm used to update the SET and test suite to reflect this 

update. The first thing to note is that the method shown is the top level algorithm, which makes 

calls to a version slightly different, containing only the first for loop, as the second for loop only 

needs to be run once, at the end of exploration, to make the updates to the test suite. 

The way the update works is much like any other, in that it begins by traversing through the 

tree, looking for the element that has been changed (in this case a transition where the input has 

had a parameter added), and when it is found, it simply adds a symbolic variable as the parameter.  

The last thing that is done, as previously mentioned, is that once the whole tree has been 

explored and symbolic parameters have been added, updates to the test suite need to occur. The 

way this is done is to inspect each individual input for each test case, and if an input is triggered 

by the signal with the added parameter, a parameter of zero is added. The reason we can be 

certain that the parameter is 0 is that there would be no constraints placed on the parameter at this 

point, as the only change made was introducing it. A symbolic variable with no constraints is 

always solved to be the constant zero (0). 
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Figure 6.1.4 addParameter Algorithm 

6.2 Partial Symbolic Execution 

Partial Symbolic Execution refers to the generation of some part of a whole SET; a subtree 

from within an entire tree. The subtree represents all possible execution paths from a provided 

symbolic state; much like full symbolic execution provides all execution paths from the initial 

state. The way this is accomplished is that a depth-first search is performed on the original SET, 

looking for all symbolic states impacted by the difference reported by the tool, and these 

symbolic states (or the ones preceding them in some cases) are used as the roots for partial 
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symbolic execution. The newly obtained subtrees are then used to replace the initial subtrees, and 

the result is a SET reflective of the new model. 

The theory behind this implementation is that some number of partial symbolic executions 

will ultimately require less time and resources than a full symbolic execution, excepting of course 

corner cases that will result in the partial symbolic execution taking place from the initial state. 

To argue that the use of partial symbolic execution is beneficial to incremental test case 

generation, we provide a simple example. 

Figure 6.2.1 shows a simple SET that will be used as our original model SET. Execution 

may proceed from symbolic state A to either B or C, both of which proceed to either D or E, and 

finally from either D or E, execution returns to A, which in this case creates a subsumption 

relationship with the A at the root of the tree. 

To demonstrate the effectiveness of partial symbolic execution, the evolution step that is 

performed is the addition of a transition to a newly added state F within the state machine that is 

reachable from state E only. Within the SET, both occurrences of symbolic state E are able to 

transition to a symbolic state F. It is evident that the newly generated SET would look similar to 

the original, with a two-way branching from symbolic state E, to both A and F, and this full 

generation would require generating a tree containing a total of 13 symbolic states. However, if 

we search the original tree for the known difference (addition of new transition to new state), we 

find that State E is the point where execution diverges, by passing symbolic state E as the root for 

partial symbolic execution, it will generate a subtree containing only three symbolic states; this 

being repeated a second time, when the second occurrence of symbolic state E is found. These 

two generated subtrees, totaling six symbolic states, are shown in Figure 6.2.2. 
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Figure 6.2.1 Simple SET 

By replacing the original instances of symbolic state E with the newly generated ones, we 

can obtain the full SET for the newly evolved model at a reduced amount of workload and time. 

The final SET can be seen in Figure 6.2.3. 

 

Figure 6.2.2 Two Generated Subtrees 

 

Figure 6.2.3 Evolved SET Including Subtrees 
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One realization that we faced when choosing to pursue this method of obtaining the new 

SET was that the additional overhead associated with differencing the original models (model 

comparison and iterating over the list of differences), and locating those differences within the 

original SET would be problematic and the overall savings may not have been worth-while when 

compared to simply regenerating the full SET. The thing to keep in mind is that this example 

shows that only six states needed to be generated as opposed to 13, but in larger models, the 

savings can become even more substantial. 

6.2.1 Implementation 

To implement partial symbolic execution where necessary, a number of methods were 

created for the evolution steps that are able to leverage partial symbolic execution. These 

different methods are largely similar, and only exist as different methods to allow for future 

optimizations to specific cases. In this section we will present a generalized algorithm used in a 

number of cases, and specify which methods implement this algorithm. 

The first thing to note is that there are two steps to these types of updates: obtaining the new 

SET, and generating the new Test Suite. Obtaining the SET will be discussed in detail, but the 

second step of generating the test suite requires no further explanation, as we make use of the test 

generation algorithm presented in Section 4.2.1 to fully generate the new test suite, as this is still 

the most cost-effective way of obtaining the updated test suite. 

Figure 6.2.4 shows the generalized recursive algorithm that is used for partial symbolic 

execution as an implementation for generating a SET. The parameters to it (and all 

implementations of it) are the current state being explored, the actual object of difference from 

the model, the list of states that have already been visited, the incoming transition to the current 

state, and the previous state in the execution path. 
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Figure 6.2.4 Generalized Algorithm used for Partial Symbolic Execution 

The reason the list of visited states is necessary, is that it is passed to the partial symbolic 

execution method, and used to assist the subsumption checking; since the generation is not 

originally aware of visited states, by passing a list of already visited states to it, it has some sense 

of the exploration history, and more options for subsumption. For the same reason the previous 

state and incoming transitions are required of each method; they simply increase the likelihood of 

finding a matched state for subsumption. 

To explore this further, we will step through the algorithm and explain the purpose and aim 

of each step. The first thing that is done is that the current state is added to the list of visited states 

(line 4), which is necessary for subsumption, as explained above. The next thing done is to figure 

out the name of the state where the difference occurs (line 6) and we compare that to the name of 

the current state (line 8). If the two names are equal, the affected state has been found, and 

modifications need to be made to the tree (lines 9-29) rooted at this state. The first thing that is 
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done is that the current state is converted into a symbolic state (line 10) that is then passed as the 

root of the partial symbolic execution (line 12). All of the existing outgoing transitions are 

removed from the current state (lines 14-17) and replaced with the transitions from the root state 

of the resulting partial SET (lines 19-26). In the event that the name of the current state does not 

match, exploration continues for each of the outgoing transitions from the current state, further 

down the tree (lines 31-34). 

As stated, the new SET is then used to generate the new test suite, and the results are 

presented to the user and saved to the file system. 

Since the algorithm that was outlined was a generalization, it is important to explore the 

individual implementations of used within the tool. Table 3 provides a list of the six methods that 

use the algorithm outlined in Figure 6.2.4. Although there are a number of other evolution steps 

that use partial symbolic execution, there are some that are similar enough that the 

implementations are the same, and there was no need to duplicate the same code. 

 

Table 3 Methods Using Generalized Partial Symbolic Execution Algorithm 

6.3 Full Symbolic Execution 

The third and final (and least beneficial) option for updating the SET and test suite is to 

symbolically execute the entire model and use the SET to generate the test cases. As it is the goal 

to avoid symbolic execution whenever possible, this is of course the last resort. Our exploration 

findings only indicated one evolution step where this type of update is necessary every time: a 

change to the initial value of an attribute. This is a change where even though there may be no 

effect on execution, there is no way of determining this with certainty from the existing SET. 

Implementations of Partial Symbolic Execution

addTransition

addTransitionBehaviour

addStateBehaviour

changeTransitionTrigger

changeTransitionTarget

deleteParam
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Given the overhead provided by comparing the original and evolved model, and then the 

cost of a full symbolic execution, there will be absolutely no possibility of our implementation 

outperforming the existing method, and this is a realization we were well aware of during 

exploration and implementation, however given that only one case of the 14 evolution steps 

requires a full symbolic execution every time, this was encouraging. 

The last item of note is that it is possible for any evolution step implemented using partial 

symbolic execution to actually require a full symbolic execution, should the difference occur at 

the root state of the tree. This is indeed a possibility, but even in these cases it is still considered a 

partial symbolic execution. 

The one method that implements full symbolic execution is the changeInitialValue method 

and it contains two calls: one to symbolically execute the model, and one to generate the test 

suite. 

6.4 Summary 

Given that there are three different methods of updating a SET and test suite to be reflective 

of an evolved model, and they vary in computational cost, it is always a benefit to determine the 

least cost option for any evolution step; we were able to do exactly that in our implementation. In 

any case where direct updates are possible, they are performed; when they are not possible a new 

SET is obtained, either by partial (preferred) or full symbolic execution, and the resulting SET is 

used to generate test cases. 

Table 4 shows the 14 evolution steps, and the operation classifications from Chapter 4, as 

well as the method within the code that implements each update. Note that evolution step 1 does 

not have a method for adding a state as this has no effect directly, but the transition added does, 

and this calls addTransition. Additionally, evolution step 5 has two implementations for the two 

different ways a transition can be altered. Lastly you will note that a number of steps use the same 

methods having to do with behaviour/action code, and this is because they share the same 

implementation. 
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Table 4 Implemented Methods for Classifications 

A strong decision engine using the classifications discovered allows for the best possible 

option to be performed in each case. 

  

Evolution Step Classification of Update Operation Implemented Method

1. Add State Partial Symbolic Execution addTransition (nothing for state)

2. Modify State DirectUpdate changeStateName

3. Delete State DirectUpdate deleteState

4. Add Transition Partial Symbolic Execution addTransition

5. Modify Transition Partial Symbolic Execution changeTransitionTarger or changeTransitionTrigger

6. Delete Transition DirectUpdate deleteTransition

7. Add Entry Code to a State Partial Symbolic Execution addStateBehaviour

8. Modify Entry Code on a State Partial Symbolic Execution addStateBehaviour

9. Remove Entry Code from a State Partial Symbolic Execution addStateBehaviour

10. Add Action Code on a Transition (send output) Partial Symbolic Execution addTransitionBehaviour

11. Add Action Code on a Transition (modify val) Partial Symbolic Execution addTransitionBehaviour

12. Add a Parameter to a Signal DirectUpdate addParam

13. Remove a Parameter from a Signal Partial Symbolic Execution deleteParam

14. Change Initial Value of an Attribute Full Symbolic Execution changeInitialValue
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Chapter 7. Tool Development 

The chosen method of implementation for incremental test case generation was a plugin for 

IBM’s Rational Software Architect RealTime Edition [16] called IncreTesCaGen. We took the 

numerous algorithms and implementations for things such as test case generation, SET and test 

suite differencing, and combined them with a slightly modified version of the existing plugin for 

symbolic execution and analysis of UML-RT Models (SAUML 0.0.1) [3], to create a single 

plugin capable of performing incremental test case generation for a UML-RT model, provided the 

original artifacts are available to the plugin. 

The program flow of the entire plugin is shown in Figure 3.5.1, and is rather linear, with the 

exception of the decision on which method is chosen to implement the updating of the SET and 

Test Suite. 

In addition to the full implementation, and its ability to provide the updated test suite to the 

user, the final tool possesses the capability to provide other useful information to the user, as well 

as serves as a representation of the achievement of our more abstract goal of classifying the 

effects of model evolution. Throughout the remainder of this chapter, these additional benefits 

will be explored in detail. 

7.1 Application of Classifications 

One of the main goals of this research from early on was to obtain an understanding of the 

effects of model evolution on execution and testing, and to classify these effects into categories of 

classifications. While the tool does not explicitly state to which class each update belongs to and 

how the updates were performed, the tool itself is an implementation of these classifications. We 

were able to understand how certain types of evolution affected the resulting artifacts, and were 

able to group like results together; this is demonstrated through using the plugin to advance tests 

cases along with the evolved model. 
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The classifications as they exist currently could be further refined, but in their current state 

are significantly reflective of the types of updates possible to a UML-RT model. The similarities 

that exist between the effects of model evolutions allowed for a very succinct classification that 

led to an implementation and realization of our original goal. 

7.2 Regeneration as Necessary 

Another benefit of the final implementation that comes from the classifications, and the 

decision on how to update the test suite and SET, is the ability to identify the cases where the 

original method is the best option, and to regenerate the SET, or some portion of it, as necessary.  

It is impossible for a tool to ever do everything that a previous implementation can do (let 

alone be better at everything). Due to this it is important to be able to leverage existing techniques 

in times where it is beneficial to the user; when a difference is found where updates are not 

possible, and partial symbolic execution is not possible, the tool is able to access the original 

symbolic execution plugin [3] to perform the generation of the SET, and then continues by 

generating the test suite from this SET. 

7.3 SETs and Tree Differencing for Analysis 

This specific feature of the plugin is not something that is available by default, but given a 

few tweaks to the source code, it can become a very useful analysis tool for model evolution. The 

ability to compare the original SET and the new SET is something that can provide insightful 

information to the user about the effects of the evolution they have performed. 

One of the uses for SET differencing in terms of analysis is locating divergence points 

within the SETs; by finding the highest point within the tree (earliest point in execution) where a 

difference occurs, we can determine which portions of execution remain unchanged, and which 

contain possible changes. Due to the nature of SETs, any sections of a SET after a difference 

point can be (and likely are) different, meaning that the point of divergence is useful for 

information such as fault finding or variable value assignments. 
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In addition to simply determining effects on execution, differencing SETs and determining 

which paths differ and which remain unchanged is very useful in terms of test case selection [14]. 

Oftentimes a test suite may be far too large to even run all of the tests, let alone generate them all, 

which is why it is imperative to select test cases based on what has changed from an original 

model. Additionally, other methods of test case selection based on input variables or tree 

sectioning are possible. 

Here we will provide two examples of test case selection methods based on analysis of the 

newly obtained SET. The first being a subset selection, and the other is variable bounding. 

 

Figure 7.3.1 Sample SET for Test Selection 

Figure 7.3.1 shows a simple SET that will be used for our examples. Given this SET, a full 

test suite would consist of six test cases, one to take you to each leaf node, and each test would 

pass through four states. The six cases for this example would be as follows: 

1. ABDH 

2. ABDI 

3. ABEJ 

4. ACFK 

5. ACGL 

6. ACGM 
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The first method of test case selection is a systematic method, which deals with moving up 

some number of levels in the SET, and only directly following the path to that point, and then 

randomly selecting a given number (usually one) of test cases from the possible tests that begin 

with that path. For this example, if we were to specify moving up one level in the tree, and then 

selecting one test at random, we would only generate four tests, instead of six, meaning only two-

thirds of the tests are generated and run; however they still provide an accurate representation of 

all tests. For example, 4 possible tests that would be generated using this example would be: 

1. ABDH 

2. ABEJ 

3. ACFK 

4. ACGM 

While it is true that this method does not end up with the entire test suite, it provides a close 

approximation, testing some subset of the execution paths (dependent on user), and still allowing 

for some downsizing of the test suite when necessary. 

The second method of test case selection that is worth exploring is variable bounding. Since 

the SET branches based on both input signals, as well as conditionals, it is entirely possible to 

select test cases based on a certain path constraint. Say for example the branching from state A to 

state B or C is based on an if statement on a value, where the branch to B occurs if the value is 

less than zero, and the branch to C occurs if it is greater than or equal to zero. If we wanted to 

select test cases where this input variable could not take on a negative value, we could easily do 

this, and we would be left with only three test cases based on this selection. These three cases 

would be: 

1. ACFK 

2. ACGL 

3. ACGM 

The last item of relevance in terms of using SETs and tree differencing for analysis is the 

ability to perform an impact analysis on changes. We developed a very simple approximation that 



 

 

72 

 

 

can provide a numerical value approximating how much of a test suite is affected by a given set 

of changes. By differencing the trees and finding all of the highest difference points you can 

assign values and the total effect is reported. 

The number of original test cases (known at the time of differencing), is assigned to the root 

node of the tree, as a change to that node in the tree would affect that number of tests. From there 

the tree is traversed and values are assigned to each node until a difference is found, and the 

current value of that node is added to the total difference amount; once the entire tree is searched, 

the total difference amount is divided by the total number of tests to determine the percentage of 

impact of the changes. The following equation shows how the value of impact of a state is 

calculated, with the base case being that the root node is equal to the number of test cases. 

                    ⌈
             

                
⌉ 

 

To better understand an example is provided in Figure 7.3.2, which outlines the impact 

values of each state instead of a state name. As you will note, this is indeed an approximation, 

and due to the inclusion of the ceiling function in the formula, it becomes an over approximation, 

as demonstrated by the two leaf nodes with a value of two, implying that a change at that point 

would affect two test cases, instead of the actual one that test it does affect.  

 

Figure 7.3.2 Sample SET for Impact Analysis 



 

 

73 

 

 

To show the total impact, another example is provided, using the same tree, but with points 

of differences noted by being highlighted in red. Figure 7.3.3 shows these differences, having 

weights of three and two, for a combined total of five. The impact analysis shows that the 

difference affects five of six test cases, or approximately 83% of the test cases and this 

information can be quite useful.  

 

Figure 7.3.3 Sample SET Highlighting Differences 

One important item to note is that this algorithm for weighting states is only an 

approximation, and it best suited for SETs that have a relatively equal distribution, which is 

certainly not always the case. It is entirely possible that this method can cause an abnormally high 

impact due to over approximation. Figure 7.3.4 demonstrates this problem where branching 

occurs once to a leaf node, assigning it a value of 50, but it actually only affects one test case. 

This is a drawback of the approximation, but if this is understood, then the approximation is still a 

very useful and valid tool. 
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Figure 7.3.4 Demonstration of Misapproximation 

7.4 Notification of Updates 

The last benefit of the tool implementation is the ability to notify the user of test case 

updates with specific references to which tests were removed from the original test suite, which 

test cases were added into the new test suite, or if there was no change to the test suite. 

The direct report to the user is useful for an extended methodology of test case selection, in 

that since it is known which cases are newly added, and therefore which tests have not changed, 

the user can choose to only run the new test cases, and skip over the unaltered ones. This allows 

the user to run only the essential tests representative of any changes in execution. 

This information is communicated to the user via a dialog box in the tool that states that 

either the test cases have not changed or that there are differences and provides additional details. 

Figure 7.4.1 shows two examples of dialog boxes that the tool presents to the user. The first 

reports that the test suite has not changed from the original, and the second states the test cases 

differ, and then specifies which test(s) have been removed, and which have been added, so the 

user can choose to run only the newly added tests. 
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Figure 7.4.1 Example Dialog Boxes 

7.5 Summary 

After completing the research into the effects of model evolution on testing, and 

implementing incremental test case generation, it was imperative to bring all of these features 

together into one tool that allows the user to not only obtain the updated artifacts for their model, 

but to also analyze the differences, and be able to determine with more detail exactly how their 

evolution step has affected the model’s SET and test suite. It is due to this requirement that the 

final tool IncreTesCaGen, a plugin for RSA-RTE [16], included some of these features by 

default, and the option to implement the others. 

The plugin boasts a final reporting mechanism so that developers are made aware of exactly 

which tests have changed and can decide which tests to run based on that. 

Additionally the analysis features of the plugin allow for further investigation in areas such 

as test case selection through SET examination, by choosing a method of systematically selecting 

tests. 

Another analysis feature of the tool is the change impact analysis that provides an 

approximation of the overall effect of a change on the test suite by assigning values to each state 
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in a SET and totaling all of the states where a difference occurs, and determining what percentage 

of the whole test suite is affected. 

The last purpose the tool serves, in addition to the obvious implementation of incremental 

test case generation, is that it is a concrete representation of the classification of the effects of 

model evolution steps on SETs and Test Suites that were presented in Chapter 4. 

Overall, the tool development allowed us to present the work in one compact 

implementation with the ability for further analysis should the user wish to explore the evolution 

further. 
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Chapter 8. Validation 

8.1 Procedure and Results 

8.1.1 Correctness Validation Procedure 

The first step in validating our implementation was to ensure correctness of the SETs and 

Test Suites generated by the tool. This was done by directly comparing them to the SETs and Test 

suites that are generated by full symbolic execution, and performing the test case generation 

algorithm on that SET. Having the initial models to compare to allowed a simple differencing to 

determine if the output produced IncreTesCaGen was correct. 

To do this each of the five original models found in Appendix A – Example Models were 

run through this process, and each of their 14 evolutions as well, meaning that a total of 75 SETs  

and test suites of varying size and complexity (including originals) were generated as comparison 

for the output of our implementation of incremental test case generation. 

The next step was to run each of the 70 evolved models through IncreTesCaGen and to 

compare the results with the baseline outputs. Having done this, approximately 85% of the 

outputs were identical to those of the baseline; the remaining outputs were minor exceptions. 

These exceptions were explored further and it was determined that the only differences were to 

some of the cases where partial symbolic execution was used and subsumption between two 

states was not detected. These resulting test cases are not incorrect, and do cover all of the paths 

in the baseline test suites, but may contain a few additional redundant inputs at the end of a test 

case. These are an acceptable addition as they maintain the same testing, plus a slight bit of 

redundancy. 

Based on these comparisons, it is safe to conclude that on a correctness criterion, our 

implementation was able to correctly produce the same results as our baseline. 
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8.1.2 Performance Validation Procedure 

The next area of validation for our tool was in terms of performance vs. the original method, 

and the metric that we chose to measure performance was the time taken to completely generate 

the new SET and Test Suite for the evolved model. 

Just as with correctness, we needed a benchmark to compare to, and this was again 

accomplished by running the same five example models through the symbolic execution engine 

and test case generation algorithm, with a timer to measure the time of execution to the nearest 

one-thousandth of a second. These times were recorded as the benchmark time for the tool, and 

were the “time to beat”. It should be noted that the times reported in this section and in Appendix 

B – Timing Values are not the only data points, and in fact are averages of three executions for 

each value, in order to mitigate the variance on the time.  

All runs were completed on the same computer, a 2.66GHz Intel® Core™ 2 Quad CPU with 

4GB of RAM, running the 64-bit version of Windows 7. Timings were then recorded for our 

incremental implementation as well, using the same three measure rule, on the same machine as 

the benchmark to remove as much variability as possible. 

8.1.3 Results 

For each evolution step for each model, the results that are available are: benchmark 

performance, tool performance, and the percentage of gain/loss. The individual timing values for 

each model can be found in Appendix B – Timing Values in chart form for further inspection. 

Table 5 outlines the gain or loss, in terms of seconds, as well as percentage of benchmark 

time, for each evolution step (rows) on the five example models (columns), as well as the 

averages. Note that a number of the evolution steps do indeed have a positive average (average 

gain) but the majority show a negative average (average loss). This will be explored further in 

Section 8.2, with explanations as to why this has occurred. 
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Table 5 Tool Performance - Positive values indicate an improvement over the benchmark (negative 

indicates loss). Sec is the amount of time gained or lost, and the percentage of the overall gain/loss is shown 
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Figure 8.1.1 Tool Performance Graph (Evolution Steps) - Positive values indicate an improvement over the 

benchmark (negative indicate loss). 
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Figure 8.1.1 plots the gain and/or loss of the tool versus the benchmark in seconds for the 

five models for each evolution step. The graph provides slightly more information than the values 

alone, as the graph is able to communicate that even though the average was a loss for most of the 

evolution steps, for all but two of them there exist input models for which our technique was able 

to outperform the benchmark and demonstrate a gain. It is these cases that provide interesting 

findings which will be discussed in detail in the next section. 

Figure 8.1.2 shows a plot for each of the five models, showing much of the same patterns. 

Even though the averages for three of the five are below zero, all five are showing a gain as their 

maximum value. It is made clear that models 4 and 5 both contain negative outliers.  



 

 

82 

 

 

 

Figure 8.1.2 Tool Performance Graph (Model Number) - Positive values indicate an improvement over the 

benchmark (negative indicate loss). 
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8.2 Findings 

8.2.1 Evolution Steps 

The first point of interest that has been highlighted by the results is the clear clustering of the 

results based on the initial classifications of evolution steps. The four evolution steps that allowed 

for direct updates consistently performed better than the benchmark in every example. The 

evolution steps requiring partial symbolic execution all performed in the middle range, with some 

of their times being faster than the bench mark and some being much worse, and the average 

sitting around break even (slightly on the loss side). Finally the one evolution step requiring a full 

symbolic execution consistently performed worse than the tool in every case. These exact clusters 

are encouraging support for the classifications defined in Chapter 4, with the single exception of 

evolution step 13 (removal of a parameter) which also consistently performed worse than the 

benchmark. The reasoning for this is that the parameter that was removed was used in the initial 

state, or very early on in execution, meaning that it was basically a full regeneration each time; 

therefore it would essentially become part of the full regeneration classification. Table 6 

highlights the relationship between the classifications as presented and the average gain/loss of 

the tool in terms of performance. 

 

Table 6 Relationship Between Classification and Gain/Loss 

Evolution Step Classification of Update Operation Average % Gain/Loss

1. Add State Partial Symbolic Execution -91.14%

2. Modify State DirectUpdate 39.74%

3. Delete State DirectUpdate 20.01%

4. Add Transition Partial Symbolic Execution -295.19%

5. Modify Transition Partial Symbolic Execution -44.15%

6. Delete Transition DirectUpdate 32.63%

7. Add Entry Code to a State Partial Symbolic Execution -8.66%

8. Modify Entry Code on a State Partial Symbolic Execution -3.59%

9. Delete Entry Code from a State Partial Symbolic Execution -35.44%

10. Add Action Code on a Transition (send output) Partial Symbolic Execution -61.56%

11. Add Action Code on a Transition (modify val) Partial Symbolic Execution -275.06%

12. Add a Parameter to a Signal DirectUpdate 37.80%

13. Delete a Parameter from a Signal Partial Symbolic Execution -88.21%

14. Modify Initial Value of an Attribute Full Symbolic Execution -28.45%
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These findings are indicative of the point we were trying to prove, being that the symbolic 

execution is the most time consuming portion of the test case generation, and whenever it can be 

avoided, the gain increases. This shows that the following changes to a model are the least costly 

in terms of test case evolution: changing the name of a state, removing a state entirely, removing 

a transition entirely, or adding a parameter to an input signal, whereas the most costly updates are 

to remove a parameter from an input signal, or to change the initial value of an attribute. The 

remainder of the evolution steps each depend on other factors to determine the effectiveness of 

the tool, and those will be explored further below. 

8.2.2 Model Design 

Having explored the relationship between the evolution step and the performance of the tool 

it is interesting to investigate the connection between the model itself and the performance of the 

tool, in order to determine the types of models where the tool performs better, and the types of 

models where it will perform consistently at a loss. As was the case with each of the evolution 

steps, there are some models that perform consistently well, and some that were poor across the 

board, the only distinction with this analysis is that there is no one model that outperformed the 

benchmark in every case, nor one that was worse in every case. This lack of a clear cut result is 

admittedly not encouraging, but the results are still interesting upon further inspection. 

The first area of note is Model 1, the model that performed better than the benchmark in 11 

of the 14 tests, and two of the three times when a loss was found, it was by rather small amounts. 

The reason this result is noteworthy is the size of the test suite generated from this model; our 

largest example, generating 6,820 test cases for the original model. While the model is linear in 

its execution, containing no loops (meaning the SET generated does not require the subsumption 

checking to remove extraneous states) the overall performance is still impressive, saving from 

23.29% to 56.05% in the cases where it saved time over the benchmark. This suggests that in 

large models without looping the tool is going to be much more effective than the benchmark 

method for test case generation. 
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The issue created by looping within a model, either from loops in the state machine or within 

code, is that they tend to produce SETs that contain a larger number of subsumed states, whereas 

a linear model does not. The problem that arises from this is that when performing partial 

symbolic execution on models of this type, states can be visited more often than necessary, and 

the subsumption checking may not produce the same results as a full symbolic execution. This is 

why models containing large numbers of complex loops have shown to perform worse than those 

of a simpler design. 

8.2.3 Model Size 

Interestingly enough, the next piece of information obtained from the results seems to imply 

that the tool performs better on larger models, as opposed to trivial models. 

The theory behind this claim is that in larger models, the size of the impacted parts will tend 

to be smaller relative to the overall model size. By leveraging partial symbolic execution the 

overhead remains small and only subtrees are generated as needed. 

To provide numerical evidence of this, we present the times and gain/loss % for two models 

that did not perform overly well in cases using partial symbolic execution, showing that as the 

model increased in size, for the most part the tool performance improved. Table 7 shows these 

values for Model 4 as the smaller model, and Model 3 as the larger model, both of which share a 

similar composition, along with the comparison of improvement of the larger model over the 

smaller model. The evolution steps using partial symbolic execution are highlighted in yellow, as 

they are the areas of interest for this comparison. 
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Table 7 Comparison of Model Size on Computation Time for Model 4 and Model 3 

For this comparison we will exclude evolution step 13 from any further investigation for the 

reasons stated in the previous section. Of the eight remaining evolution steps for comparison, five 

of them show an improvement as the size of the model increases, three of which show a very 

substantial improvement. These results are very encouraging for the claim that the tool performs 

better on a larger model than a smaller model; the counter-supportive numbers can likely be 

attributed to another factor that plays into the efficiency of the tool which will be discussed in the 

next section. 

Figure 8.2.1 shows an emerging trend of gain increasing with model size. There are two 

distinct clusters shown between similar models in terms of size and complexity (note models 3 

and 4 fall within the same cluster). Within these clusters, as the size increases the performance (in 

this case in terms of seconds) increases as well. It is important to note that the horizontal axis is 

logarithmic, so the lines drawn show signs of a logarithmic correlation. 

Benchmark Tool Gain/Loss Benchmark Tool Gain/Loss Improvement?

1 7.523 43.37 -476.50% 9.031 7.842 13.17% 489.66%

2 7.314 6.174 15.59% 7.825 5.09 34.95% 19.37%

3 5.647 5.328 5.65% 7.881 5.462 30.69% 25.05%

4 9.205 145.382 -1479.38% 14.232 14.722 -3.44% 1475.94%

5 6.088 18.647 -206.29% 7.435 9.054 -21.78% 184.52%

6 6.198 4.258 31.30% 9.604 5.558 42.13% 10.83%

7 6.728 8.182 -21.61% 8.266 7.942 3.92% 25.53%

8 7.387 7.801 -5.60% 10.465 9.896 5.44% 11.04%

9 5.188 5.896 -13.65% 9.979 22.419 -124.66% -111.01%

10 7.29 7.691 -5.50% 7.078 24.892 -251.68% -246.18%

11 7.327 39.855 -443.95% 8.495 89.298 -951.18% -507.24%

12 7.91 4.761 39.81% 9.519 6.229 34.56% -5.25%

13 4.062 6.518 -60.46% 4.667 7.743 -65.91% -5.45%

14 7.822 9.543 -22.00% 8.236 12.611 -53.12% -31.12%

Model 4 Model 3
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Figure 8.2.1 Model Performance vs. Size 

8.2.4 Location of Change 

The last area of interest in terms of findings is the location of the change within the UML-

RT model, and its representative location with the SET. Intuitively evident is the fact that location 

plays a big role in the performance of the tool; a change early on in execution (near the top of the 

SET) is much more costly than one later on in execution (near the bottom of a tree). The 

reasoning behind this is that the higher in the tree the difference occurs, the larger the subtree that 

is generated by partial symbolic execution will need to be. To show this, refer to example Model 

3, which is a fairly large model with a number of states and looping, and we will be looking 

specifically at two evolution steps performed at different extremes of the tree: the addition of a 

new state reachable from State16 (evolution step 1), and the addition of action code to a transition 

between State3 and State4 (evolution step 10). The first evolution takes place at a location such 

that it will only require generation of subtrees from leaf nodes of the original tree, whereas the 

second will require generation of large subtrees early on in execution. Table 8 shows the times for 

these two evolution steps for both the benchmark and the tool, and you can see that the change 
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occurring later on in the model (1) performed at a gain, while the one with the change early on in 

the model (10) performed at a significant loss. The interesting factor in this is that because even 

though the difference in evolution step occurs more times than the one in evolution step 10, 

meaning that it actually performs partial symbolic execution more times than in evolution step 10, 

it still outperforms it, due to the size of the trees generated. 

 

Table 8 Performance for Model 3 (selected locations of change) 

This type of result is demonstrated in a number of other models as well, such as in Model 2, 

where evolution step 7 affects the waiting state which is early on in the model performed at a loss 

of 45.2%, and evolution step 10 which effects the transition from zero to returning which is late 

in the model performs at a gain of 4.28%. 

From these findings it stands to reason that changes early on in a SET have a larger impact 

on the generation of test cases than those later on in execution. 

8.3 Summary 

Based on the results of the validation, a number of findings have been observed in regards to 

the performance of the tool and more generally, the effects of model evolutions on symbolic 

execution and test case generation. 

The first finding has to do with the type of model evolution step, and the classifications of 

those model evolution steps. In all cases the evolution steps classified as “Direct Update” 

outperformed the benchmark, thus confirming that the use of symbolic execution should be 

avoided whenever possible. Additionally the evolution step that was classified as “Full Symbolic 

Execution” consistently performed worse than the benchmark. 

The next conclusion that we were able to come to was that the design of the model plays a 

big part in the efficiency of the tool. Models that are lacking cycles and other complex design 

Benchmark Time Tool Performance %Gain/Loss

1 9.031 7.842 13.17%

10 7.078 24.892 -251.68%
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patters performed better than those that were complicated; an example of this is Model 1, which 

is the largest model, and contains no cycles in execution. With Model 1, the tool performed better 

than the benchmark in all but three of the evolution steps. The model which performed second 

best of the five examples was Model 5 which contains a number of cycles, which as previously 

explained cause issues in partial symbolic execution, but overall was simpler than Models 3 and 4 

which were full of cycles. 

Another area that plays a role in the effect of model evolution on SET and test case 

generation is model size. This is shown first and foremost by Model 1, which is by far the largest 

of the models and performed the best of them all. However, as previously stated Model 1 was 

also a simple model, so excluding Model 1 from the model size analysis was necessary to provide 

useful findings. Using Model 4 as the small model and Model 3 as the larger model, we compared 

their performances, and in a majority of the evolution steps using partial symbolic execution, the 

larger model performed better than the smaller model. Possible reasoning for this was explained, 

having to do with the overhead of the process becoming less significant as a model increases in 

size. 

The last interesting finding had to do with location of change, and how that affected the 

efficiency of the tool. We were able to conclude that changes early on in execution have a larger 

impact on the SET and tests than those later on in execution, due to the propagating nature of 

SETs, and an effect on the actual generation due to the sizes of the subtrees that are generated. An 

earlier change requires a large subtree generation, whereas a later change requires a smaller 

generation (in most cases). 

Based on all of these findings we can conclude that the tool would perform best on a large, 

simple model, where the change occurs later on in execution, or is a change in the “Direct 

Update” classification. This is held true, as the two highest gains across all models and all 

evolution steps are within Model 1, and are evolution steps 2 and 12, with gains of 55.72% and 

56.05% respectively. When we exclude that classification, the largest gains are still found in 

Model 1, which is our largest simplest model. Excluding Model 1 because of its simplicity, while 

still excluding the “Direct Update” classification, the largest gain is evolution step 9 in Model 5, 

which is a change later on in execution; this provides proof of the importance of location of 
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change. Conversely, an example of poor model that developers would hope to avoid in 

development, would be a smaller to medium sized model, containing a number of loops, and the 

evolution performed would be one of the two consistently poor performing steps (modify initial 

value or remove parameter), or some other step requiring partial symbolic execution from an 

early on state in the SET. Keeping these two extremes in mind during development in testing can 

provide useful insight in to the best ways to approach development of a model of a system.  
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Chapter 9. Conclusion  

9.1 Summary 

The first of the main goals of this work was to develop a tool capable of incrementally 

generating test cases for UML-RT models, which would use existing artifacts from the original 

model; this was accomplished through the use of several individual components being combined 

together into IncreTesCaGen, a single plugin for IBM Rational Software Architect RealTime 

Edition [16]. The tool takes as input, an original model and the symbolic execution tree for that 

model, as well as a full test suite for that model, along with an evolved model, and performs a 

comparison on the two models. Based on the results of our comparative study, the tool makes the 

appropriate updates to the SET and test suite such that they become reflective of the new model. 

One of the main goals in this implementation was to avoid symbolic execution whenever 

possible, as this is the most costly operation in the test case generation process. The end result 

was a tool that avoided symbolic execution whenever possible, and utilized an adapted partial 

symbolic execution in cases where that would be sufficient in updating the SET, which is then 

used to generate the new test cases. 

The second of our goals was to better understand the effects of model evolution on models, 

and on their execution and testing. This was completed through a study of five example models 

(found in Appendix A – Example Models), in which the models were all symbolically executed 

and had test cases generated, where all of these artifacts would act as the original artifacts for 14 

evolutions that were performed on each model. After the model evolution was performed, the 

evolved models were then symbolically executed and ran through the test case generation 

algorithm, resulting in 70 sets of artifacts. These were then compared with the originals, to 

determine how evolution affected the artifacts, in hopes of observing patterns that would help 

provide classifications for the evolution steps. In this classification exercise we came up with 

three categories of updates that encompass all of the evolution steps that were studied: Direct 

Update (evolution steps where updates directly to the SET and Test Suite were possible), Partial 

Symbolic Execution (evolution steps that required some portion(s) of the SET to be regenerated 
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based on the observed differences between models), and Full Symbolic Execution (evolution 

steps that resulted in drastic changes that require a full regeneration of the SET). 

There was additional information to distill in terms of model evolution, and this was 

retrieved through our tool validation; an analysis of performance of the developed tool. As part of 

the validation step, we were able to distill additional information regarding which types of 

updates consistently performed well, and those that consistently underperformed in comparison to 

the benchmark. In addition to performance data for the types of evolution steps, interesting 

patterns emerged in relation to the model itself, and how well certain model design aspects 

perform, such as model size, model complexity, and location of change. Based on the findings we 

were able to highlight what would make a “perfect model” in terms of evolution, including the 

type of evolutions to perform. This “perfect model” would be larger in size, contain no (or a very 

small number of loops), and the evolution step would be one of the changes that fall into the 

Direct Updates category. Obviously not all models can be of this design, and not all updates will 

be in that category, but the findings allow developers to understand the effects of design and 

evolution, and the hope is that this will allow for development to be tailored more in the direction 

of model evolution, as this is of importance in the iterative design paradigm of model-driven 

development. 

9.2 Alternate Implementation Options Explored 

As is the case with any development process, there are often a number of alternative options 

to arrive at a similar end product, but the best option is the one that is ultimately chosen. However 

it is often useful to look at some of the alternatives and describe why that method was not chosen 

in the final implementation. One such design choice for this work was the exclusion of an 

algorithm to incrementally generate the test cases based on two SETs and differencing them. This 

of course was only useful in the cases where direct updates were not possible, the gain from those 

types of evolutions was much more than this method could produce. Parts of this work were 

presented in a work-in-progress poster [5], but the work has since been excluded for the reasons 

we will discuss. 

The following steps outline the process taken to perform incremental test case generation: 



 

 

93 

 

 

1. Obtain SET for new model (either partial or full symbolic execution) 

2. Difference the two SETs to determine highest level of difference 

3. Identify “path to difference” 

4. Remove any test cases from test suite beginning with the “path to difference” 

5. Generate new tests from the identified difference point of new SET 

a. Solve any new constraints introduced for each case 

6. Prepend “path to difference” to all newly generated test cases 

7. Add newly completed test cases to test suite for complete suite for new model 

Figure 9.2.1 shows two SETs, (A) being the original model and (B) being the evolved 

model, with the differences between them shown by highlighting the difference points in red in 

SET (B). The numbers identify the transitions required to move from one symbolic state to 

another, meaning for example, the left-most test case would follow the path 1  3  7. The 

yellow paths that are the same in each tree are examples of the prefixes to the differences found, 

meaning that once the differences have been recorded, all of the test cases that begin with the 

transition chains 1  4  10, or 2  6 are removed. In this example three test cases would be 

removed of the eight total. The next step is to generate test case stubs from the difference points, 

referring to the two red states. These newly generated stubs, which in this case only contain one 

transition, are then appended to the prefix for that difference, resulting in the four following new 

test cases: 

1. 1  4  10  16 

2. 2  6  13 

3. 2  6  14 

4. 2  6  15 
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Figure 9.2.1 Two Different Trees Showing Prefixes to Differences 

The four new tests are added to the remaining five test cases, and a complete test suite with 

nine test cases is the result. 

The reason this method was ultimately not included in tool development was that there was 

very minimal opportunity for gain, and even the possibly of a loss in performance over simply 

regenerating all of the test cases using the generation algorithm. The reasoning behind this is the 

algorithm used to generate test cases is a recursive depth first search of the tree to collect the 

series of inputs for each test, followed by solving any constraints for that particular branch in the 

tree. While the proposed method of incrementally generating the tests also involved a recursive 

depth first search of the tree to find differences and searched all the way to leaf nodes in the cases 

where no difference was found. At an initial glance this method shows gain in the fact that it does 

not explore beyond the differences during this search, and while this is true, those remaining 

branches are explored during the generation of the new tests from that point, and any savings is 

lost immediately. Additionally, since it is a comparison of two trees, the traversal up until that 

point is done two times, once for each tree. The only place there was even the potential for any 

gain was the reduced amount of constraint solving that occurs as a result of this method, which 

only necessitates solving constraints for the new branches of the SET, as opposed to all paths. 

However, this poses an additional problem, in that the new execution paths in the tree may have 
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imposed additional constraints on variables that were solved for earlier use and are no longer 

valid, and this is not reflected through this algorithm. 

While the proposed incremental generation idea showed promise, it was ultimately excluded 

from the tool, however its removal does not preclude further development in the future and 

inclusion at a later time. 

9.3 Limitations 

As is the case with all software, throughout design and development a number of events 

occur that lead to some portion of the system needing to be scaled back or limited in some way; 

this tool was no exception. This section aims at summarizing limitations due to various causes, 

but mainly limitations imposed to ensure research progress. 

The first, and possibly largest limitation of the current tool is that it works only for simple, 

single capsule models, and does not function for communicating and contained capsules. These 

types of models are more predominant and common amongst real development examples; 

however implementation does not include their use. The main reason for this implementation was 

to ensure progress of the tool development, as these types of models were initially included in 

design, and early implementations incorporated their additional information, such as the Ecore 

model for SETs that was created, as it contains four types of states to differentiate containment of 

states and whether a state was a composite state or not. As stated, later on in development it was 

decided to not include these features, but the framework for them still remains. 

There were a number of small limitations that came from limitations in two of the other tools 

used during development: RSA-RTE [16], and SAUML [3]. Since our implementation uses the 

internal differencing tool from RSA-RTE, we were bound by the functionality of the differencing 

tool, and the results that it presents developers with were sometimes not overly succinct. For 

example, if a hierarchical state is added to a state machine, containing some number of states and 

transitions within it, the differencing tool only reported that the top level state was added to the 

model, and further investigation is required to determine this; however with no indication, this is 

problematic. While this is not a major concern for our development, as the current set of 
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evolution steps contains simple one item changes, it prevents further work being completed for 

evolution steps such as hierarchical composition, and limits the types of changes traceable by the 

tool. In terms symbolic execution tool (SAUML), there are a number of limitations imposed that 

propagate through to this tool as well. For example, the tool limits the languages that can be used 

as action code to either Java or C++, and does not allow for any other language on transitions or 

as entry code. Additionally, the types of variables are limited to only integer or double types, and 

do not include strings or boolean values. The last limitation imposed by SAUML deals again with 

more complex models, which although are not included in our testing, is still a limitation; the tool 

does not provide functionality for features of UML-RT such as dynamic ports and plugin capsules 

which are features of UML-RT that deal with dynamic updating of execution at runtime, such as 

connecting to a port or instantiating a new optional capsule respectively. 

9.4 Future Work 

There are a number of areas of this work that allow for improvements and advancements that 

will improve the functionality and performance of the tool; this section aims to discuss what they 

are and initial ideas for their implementation, if applicable. 

The first area of future work is simply expanding the tool to function with more complex and 

real-life models; currently the tool works for a small subset of UML-RT models, and the goal is 

that it would eventually work on any model supplied. The current area where this work would be 

beneficial is to include communicating and contained capsules, as well as dynamic runtime 

changes within the model. The runtime limitations have been imposed by the SAUML tool used 

for symbolic execution, but presumably development for this tool may eventually move to 

include those features, and we would certainly leverage that functionality with this tool. In order 

to implement the updates to include communicating and contained capsule models, the 

framework exists for this, and more work would be needed for the test case generation, but many 

of the other facets such as tree differencing and symbolic execution already are capable of these 

types of models. The main theme among this possible future work is an expansion of the 

functionality in terms of input models, whether it is in terms of size or complexity, or the addition 

of features of UML-RT that are not yet included. 
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Another area of future work that has been considered is the further investigation and 

implementation of the incremental test case generation method described in Section 9.2. With 

further investigation and time, it could be possible to update this implementation such that the 

gain becomes substantial enough to merit using it in place of the existing test case generation 

algorithm. 

Additionally, the idea of exploring other methods for test cade generation has been 

considered. Instead of using symbolic execution as a method of generating a test suite that will 

create tests for every path, it may be worth while exploring other options such as state or 

transition coverage. While this may lead to a loss in analysis, and overall testing, the removal of 

the dependency on symbolic execution may provide substantial gain. 

We also feel that work could be done in terms of optimizing the existing process, 

specifically within the decision making step. Currently in a list of change, they will be performed 

in the order presented by the RSA-RTE differencing tool (with minor exceptions) and it would be 

beneficial to look at optimizations in this area, such that less computation is done overall, by 

ordering the updates in a specific way, and grouping like actions together. Some initial 

optimizations have been made in our implementation, but there is certainly room for additional 

improvements. 
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Appendix A – Example Models 

LEGEND 

For all models, the following are the definitions for the labels describing the models.  

Loops –Does the Model Contain Loops? 

States – Number of States in the State Machine 

Transitions – Number of Transitions in the State Machine 

SET Size – Number of Symbolic States in the SET 

Test Suite Size – Number of Test Cases in the Test Suite 

MODEL 1 

 

Figure 9.4.1 State Machine for Model 1 
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Table 9 Details for Model 1 

 

 

Table 10 Detailed Evolutions for Model 1 

Loops No

States 11

Transitions 27

SET Size 12576

Test Suite Size 6820

Model 1

Additional Details

Created as a simple model with 

unrealistic style, as an example of a 

model with no looping/cycles

Evolution Step More details

1. Add State

Added "new" state reachable from State3 via 

comms.dummy()

2. Modify State changed name of State4 to State40

3. Delete State Deleted State9

4. Add Transition

added transition from state2 to State11 with trigger of 

comms.in5()

5. Modify Transition

changed target of transition from State2 to State4 to be 

State10

6. Delete Transition Delete transition from State10 to State11

7. Add Entry Code to a State Add sending of blank to state1

8. Modify Entry Code on a 

State changed entry code to state4 (removed else branch)

9. Delete Entry Code from a 

State removed entry code from State7

10. Add Action Code on a 

Transition (send output)

Add sending of blank to transition between State7 and 

State8

11. Add Action Code on a 

Transition (modify val)

Added assignment of val1 to 1000 on transition from 

State2 to State4

12. Add a Parameter to a 

Signal added int param to dummy

13. Delete a Parameter from a 

Signal removed param from in1

14. Modify Initial Value of an 

Attribute changed initial value of val1 from 0 to 1
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MODEL 2 

 

Figure 9.4.2 State Machine for Model 2 

 

 

 

Table 11 Details for Model 2 

Loops Yes

States 5

Transitions 7

SET Size 9

Test Suite Size 4

Extremely trivial example used as 

the proof of concept for many of the 

tests. The results from this model 

are bound to be the least reflective 

of tool performance.

Model 2

Additional Details
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Table 12 Detailed Evolutions for Model 2 

 

Evolution Step More details

1. Add State

added a new state reachable from returning state called 

done, reachable via null transition

2. Modify State changed the name of returning to EndState

3. Delete State deleted the returning state

4. Add Transition

added a transition from returning back up to waiting, 

basically allowing functionality to loop, this should 

drastically increase the tree size

5. Modify Transition

chnaged target of self loop to become the returning 

state

6. Delete Transition deleted transition from zero to returning

7. Add Entry Code to a State change value of val upon entering waiting state

8. Modify Entry Code on a 

State

change entry code on state zero to assign val to 0 as 

opposed to the input value, since we are already certain 

that it is 0, no change in execution but improves 

efficiency

9. Delete Entry Code from a 

State

remove entry code to returning state (the sending of 

output)

10. Add Action Code on a 

Transition (send output) send a null signal on transition from zero state

11. Add Action Code on a 

Transition (modify val)

modify val by setting it to zero on the transition out of 

negative.

12. Add a Parameter to a Signal

added a parameter to null. adding a parameter to a 

signal means that any time that input is taken a symbolic 

variable is now passed as a parameter, the effect on this 

should alter every instance of this call by having 0 as the 

input.

13. Delete a Parameter from a 

Signal

removed parameter from input signal (also needed to 

remove references to this parameter that caused errors 

in symbolic execution)

14. Modify Initial Value of an 

Attribute

change initial value of val to 5 only effects value in initial 

and waiting states, rest of tree should be uneffected
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MODEL 3 

 

Figure 9.4.3 State Machine for Model 3 

 

 

Table 13 Details for Model 3 

Loops Yes

States 16

Transitions 29

SET Size 689

Test Suite Size 439

Model 3

Additional Details

A mid sized model that is fairly 

complex in design, containing a 

number of loops.
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Table 14 Detailed Evolutions for Model 3 

 

Evolution Step More details

1. Add State Added a reachable state 17 from 16

2. Modify State change the name of State 13 to State 135

3. Delete State Deleted State 10

4. Add Transition

Added transition from State2 to State11 with a 

trigger of comms.in1()

5. Modify Transition

changed trigger of transition from State1 to 

State2 to in1, instead of in2

6. Delete Transition Deleted the transition from State 14 to State 13

7. Add Entry Code to a State Added entry code to State16 to set val to 0.

8. Modify Entry Code on a State

Changed the entry code of State2 to send 0 

instead of val in the first branch of the 

conditional

9. Delete Entry Code from a State remove entry code from State4

10. Add Action Code on a Transition 

(send output)

added "comms.out2().send()" to transition 

between State3 and State4

11. Add Action Code on a Transition 

(modify val)

added "val = 0" to transition between State6 and 

State7

12. Add a Parameter to a Signal

added a parameter to in2. adding a parameter to 

a signal means that any time that input is taken a 

symbolic variable is now passed as a parameter, 

the effect on this should alter every instance of 

this call by having 0 as the input.

13. Delete a Parameter from a Signal remove the parameter to in1

14. Modify Initial Value of an 

Attribute change initial value of val to 5
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MODEL 4 

 

Figure 9.4.4 State Machine for Model 4 

 

 

Table 15 Details for Model 4 

Loops Yes

States 4

Transitions 9

SET Size 403

Test Suite Size 288

A model similar in composition to 

Model 3, but of a smaller size. Useful 

in comparison of the effects of 

model size on performance.

Model 4

Additional Details
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Table 16 Detailed Evolutions for Model 4 

 

Evolution Step More details

1. Add State

added a reachable state doubleThree reachable from 

three via an in3 transition

2. Modify State changed three to 3

3. Delete State removed state three

4. Add Transition added transition from state three to begin

5. Modify Transition

changed the trigger of the transition from three to one 

from in1 to in3

6. Delete Transition removed transition from three to two

7. Add Entry Code to a State

added entry code to begin that decreases value of val by 

1

8. Modify Entry Code on a 

State

changed entry code of three, instead of outputting val in 

out1, it is changed to 0

9. Delete Entry Code from a 

State removed entry code from one

10. Add Action Code on a 

Transition (send output)

added an output of out2 to the transition from begin to 

three

11. Add Action Code on a 

Transition (modify val)

added an assignment of val to 0 to the transition from 

three to one

12. Add a Parameter to a 

Signal added an int param to in3

13. Delete a Parameter from a 

Signal removed the int param from in2

14. Modify Initial Value of an 

Attribute changed the initial value of val from 0 to -1
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MODEL 5 

 

Figure 9.4.5 State Machine for Model 5 

 

 

Table 17 Details for Model 5 

Loops Yes

States 7

Transitions 10

SET Size 137

Test Suite Size 66

Model 5

Additional Details

An attempt at a more realistic 

example, using actual names for 

states and transitions, in order to 

demonstrate practical application.



 

 

109 

 

 

 

Table 18 Detailed Evolutions for Model 5 

  

Evolution Step More details

1. Add State added dummy state reachable from idle, via a ping input

2. Modify State changed idle to homeScreen

3. Delete State

removed ringing state (simulate inavailability of 

incoming calls)

4. Add Transition add transition from idle to idle, with ping input

5. Modify Transition

changed transition that went from messageSent to idle, 

to have a target of ringing (not practical, but shows 

change of transition)

6. Delete Transition delete transition from messageSent to idle

7. Add Entry Code to a State added sending of notify to entry of idle

8. Modify Entry Code on a 

State change the sign from < to > in the entry code of ringing

9. Delete Entry Code from a 

State removed entry code from readMessage

10. Add Action Code on a 

Transition (send output)

added sending of notify on transition from 

newMessageRec to readMessage

11. Add Action Code on a 

Transition (modify val)

added setting of val to 1000 on transition from idle to 

ringing

12. Add a Parameter to a 

Signal added integer parameter to makeCall signal

13. Delete a Parameter from a 

Signal removed parameter from incomingCall

14. Modify Initial Value of an 

Attribute changed initial value of val1 from 7 to 70
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Appendix B – Timing Values 

 

Table 19 Performance for Model 1 

Evolution Step Benchmark Time (sec) Tool Performance (sec) %Gain/Loss

1 107.698 78.901 26.74%

2 115.041 50.942 55.72%

3 68.404 50.569 26.07%

4 115.788 79.16 31.63%

5 91.086 69.872 23.29%

6 104.089 68.562 34.13%

7 117.176 83.638 28.62%

8 113.792 74.863 34.21%

9 44.928 60.717 -35.14%

10 118.172 78.202 33.82%

11 116.836 78.923 32.45%

12 117.057 51.451 56.05%

13 8.9 31.118 -249.64%

14 114.047 117.348 -2.89%

Average 6.79%
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Table 20 Performance for Model 2 

 

Table 21 Performance for Model 3 

Evolution Step Benchmark Time (sec) Tool Performance (sec) %Gain/Loss

1 4.303 4.891 -13.66%

2 4.824 3.044 36.90%

3 5.451 4.012 26.40%

4 4.45 5.616 -26.20%

5 4.92 5.968 -21.30%

6 4.492 3.482 22.48%

7 3.978 5.776 -45.20%

8 4.012 5.87 -46.31%

9 3.827 4.981 -30.15%

10 5.627 5.386 4.28%

11 4.312 5.105 -18.39%

12 4.217 3.388 19.66%

13 3.93 5.714 -45.39%

14 4.216 5.835 -38.40%

Average -12.52%

Evolution Step Benchmark Time (sec) Tool Performance (sec) %Gain/Loss

1 9.031 7.842 13.17%

2 7.825 5.09 34.95%

3 7.881 5.462 30.69%

4 14.232 14.722 -3.44%

5 7.435 9.054 -21.78%

6 9.604 5.558 42.13%

7 8.266 7.942 3.92%

8 10.465 9.896 5.44%

9 9.979 22.419 -124.66%

10 7.078 24.892 -251.68%

11 8.495 89.298 -951.18%

12 9.519 6.229 34.56%

13 4.667 7.743 -65.91%

14 8.236 12.611 -53.12%

Average -93.35%
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Table 22  Performance for Model 4 

 

Table 23 Performance for Model 5 

Evolution Step Benchmark Time (sec) Tool Performance (sec) %Gain/Loss

1 7.523 43.37 -476.50%

2 7.314 6.174 15.59%

3 5.647 5.328 5.65%

4 9.205 145.382 -1479.38%

5 6.088 18.647 -206.29%

6 6.198 4.258 31.30%

7 6.728 8.182 -21.61%

8 7.387 7.801 -5.60%

9 5.188 5.896 -13.65%

10 7.29 7.691 -5.50%

11 7.327 39.855 -443.95%

12 7.91 4.761 39.81%

13 4.062 6.518 -60.46%

14 7.822 9.543 -22.00%

Average -188.76%

Evolution Step Benchmark Time (sec) Tool Performance (sec) %Gain/Loss

1 5.985 6.312 -5.46%

2 7.184 3.193 55.55%

3 5.31 4.714 11.22%

4 6.325 6.235 1.42%

5 5.575 5.279 5.31%

6 5.604 3.749 33.10%

7 5.658 6.169 -9.03%

8 5.793 6.123 -5.70%

9 6.708 4.936 26.42%

10 5.052 9.534 -88.72%

11 6.663 6.278 5.78%

12 6.247 3.815 38.93%

13 5.327 6.373 -19.64%

14 5.446 6.854 -25.85%

Average 1.67%


