
We’ll Make Modelers Out of 'Em Yet:
Introducing Modeling into a Curriculum

Eric J. Rapos
Department of Computer Science & Software Engineering

Miami University
Oxford, Ohio, USA

rapose@miamioh.edu

ABSTRACT
The prevalence of model-driven software engineering in industry
combined with a personal interest in the topic led to the conception
of a new course aimed at introducing students to topics related to
modeling. This paper presents a retrospective examination of this
course, including: a course overview, intra-student grade compar-
isons on topic-centered assessments, and student feedback regard-
ing course topics and implementation. The paper provides sufficient
detail of the course offering such that, if desired, readers could of-
fer a course with similar goals, outcomes, and structure. Finally,
specific lessons learned are presented in hopes of enabling future
improvements to the course and as a warning to other academics
should they begin to offer similar courses.

CCS CONCEPTS
• Social and professional topics→ Software engineering ed-
ucation; • Software and its engineering→ System modeling
languages; Software notations and tools; Unified Modeling Lan-
guage (UML);

ACM Reference Format:
Eric J. Rapos. 2018. We’ll Make Modelers Out of 'Em Yet: Introducing Model-
ing into a Curriculum. In ACM/IEEE 21th International Conference on Model
Driven Engineering Languages and Systems (MODELS ’18 Companion), Octo-
ber 14–19, 2018, Copenhagen, Denmark. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3270112.3270113

1 INTRODUCTION
In the previous academic year (2017-2018) I offered a course on
model-driven software engineering in my department for the first
time. This paper describes the motivations for this course, the con-
tent and outcomes of the course, specific data from the course
(student grades & feedback), and conclusions about the offering.
1.1 Motivation
As a member of the model-driven software engineering (MDSE)
community, I have an interest in the expansion of, and buy-in to,
MDSE activities. The importance of teaching modeling has been
presented by Hamou-Lhadj et. al. [7], indicating that the recent par-
adigm shift in development has, and must continue to be reflected
in teaching. As a new faculty member at an institution with mini-
mal exposure to modeling it became evident that to attract students
to my research group it would first be necessary to expose them to
the topics of software modeling, and MDSE. To this end, I sought
departmental approval to offer a course on modeling and was given
approval to introduce it as a special topics course for a trial run of
the material. I felt it was worthwhile to share my experiences in

introducing modeling to an undergraduate curriculum with others
who may be interested in doing the same. The goals of this paper
are to provide a retrospective look at what went well, what did not,
and some lessons learned along the way.

2 BACKGROUND & RELATEDWORK
2.1 Model-Driven Software Engineering
Model-driven software engineering (MDSE) - sometimes referred
to as model-driven engineering (MDE), model-driven software de-
velopment (MDSD), model-driven development (MDD), and other
variants - is the process of developing systems where the primary
artifacts are usually models of the system or where modeling and ab-
straction play a substantial role in the engineering and development
of the system. Kent [8] succcinctly describes early views of MDE
and the relation to the Object Management Group’s model-driven
architecture (MDA) [13].
2.2 Teaching MDSE
The instruction of MDSE has increased in recent years and as a
result numerous academics have shared their experiences and in
papers similar to this one. While MDSE has gained popularity, its
instruction is lacking as students are not adequately prepared for
the tools and skills required, and the challenges they will face.

Kuzniarz and Staron present their best practices for teaching
UML based software development [9]. Having first discovered this
work after completing my offering of an MDSE course it is inter-
esting to see both the overlap as well as what was missing from
my course. Clarke et. al. present their experiences with teaching
MDSE in a software design course [3]. Their experiences differ as
the course had prerequisites of a graduate course in software engi-
neering which indicates more experience than the students in my
course. The other difference is that Clarke et. al. detail the inclusion
of MDSE into a course on traditional software design, whereas this
paper focuses on an entire course specifically focused on MDSE.

Stephan presents findings on the challenges of incorporating
modeling into Agile software engineering courses [14]. Specifically,
Stephan relates the challenges to the best practices presented by
Kuzniarz and Staron [9]. While Agile is not the focus of the course
discussed in the paper a lecture was included which discussed the
principles of agile modeling [1]. This inclusion was made based on
recent focus on Agile methods in software development and may
feature more prominently in future offerings.
3 COURSE OVERVIEW OF CSE 470E / 570E
Wanting to provide sufficient knowledge to the students I focused
on areas that were most familiar to me and tools that I have had
experience with in the past. The following were chosen for the

https://doi.org/10.1145/3270112.3270113

course: meta-modeling, the Eclipse Modeling Framework (EMF),
modeling as a primary artifact, behavioral modeling, Papyrus-RT,
Simulink, and model-based testing. The course was then rounded
out with guest talks on MDSE in Academia, MDSE in Industry, and
some administrative lectures for projects and presentations.

3.1 Course Learning Outcomes
For all courses at my institution, instructors and/or the department
must provide Course Learning Outcomes. These outcomes describe
to students the main goals of the instructor and the topics they
will come out of the course knowing. The following are the top
level Course Learning Outcomes for CSE 470E / 570E (sub learning
outcomes exist but were ommitted due to space constraints):

(1) Explain key differences between standard software engineer-
ing and model-driven engineering practices.

(2) Explain and be able to create meta-models and resulting
instance models for typical software systems.

(3) Explain the code generation process.
(4) Explain dynamic/real-time modeling.
(5) Explain validation using models as primary artifacts.
(6) Demonstrate proficiency in creating simple models in cur-

rent modeling technologies.
3.2 Deliverables
The deliverables were a collection of labs (small introductory as-
signments which begin in class), assignments (individual work
larger in scale than labs), a group project (four phases of work
that expand upon assignments), online reading quizzes (open book
online quizzes), and exams (a midterm and a final). There was also
a project presentation for all students and a research paper for the
graduate students in the course. Table 1 provides a breakdown of
the deliverables for the course and the weighting of each for both
undergraduate and graduate students.

Table 1: Course Deliverables and Weights

Deliverable Undergraduate % Graduate %
Quizzes (5) 5% 5%
Labs (8) 8% 8%
Assignments (4) 24% 20%
Project (4 Phases) 34 % 28%
Project Presentation 4 % 4%
Research Paper - 10%
Exams (Midterm & Final) 25% 25%
Total 100% 100%

It is important to note that the course generally followed the
formula of a topic being introduced during a series of lectures,
followed up on in one or two labs, presented again in an assignment,
and one more time in the course project. As such, it is possible to
track a particular topic through the course from lab, to assignment,
to project. These groupings are presented in further detail as part
of the Case Study in Section 4. In order to understand the linking
of labs to assignments to projects, as previously described, it is
first important to identify the topics for each of these particular
deliverables. The following is a breakdown of these categories:

• 8 Labs: Meta-Modeling, EMF, Models as Primary Artifacts,
Behavioral Modeling, Papyrus-RT, Simulink, Model-Based
Testing, & Advance Model Implementation

• 4 Assignments: Meta-Modeling & EMF, Models as Primary
Artifacts, Behavioral Modeling, & Model-Based Testing

• 4 Course Project Phases: Meta-Models, Behavioral Models,
Papyrus-RT Implementation, & Model-Based Testing

3.3 Course Textbook
The text chosen for the course (based on colleague recommenda-
tions) was Model-Driven Software Engineering in Practice (Second
Edition) [2], published in 2017, written by Marco Brambilla, Jordi
Cabot, and Manuel Wimmer.

3.4 Technologies Used
• Draw.io [4]: A simple web-based drawing tool useful for
initial modeling of systems.

• Modelio [11]: A desktop modeling tool used to create UML
models in the course.

• Eclipse Modeling Framework (EMF) [5]: EMF played a
large role in the introduction of meta-modeling through the
use of its internal meta-modeling language Ecore.

• Papyrus-RT [6]: Papyrus-RT is an open-source implemen-
tation of UML-RT [12].

• Simulink [10]: The final tool introduced to students is MAT-
LAB’s modeling language Simulink. Simulink, which is a
graphical modeling tool that is data-driven and is used heav-
ily in embedded systems due to its simulation support.

4 CASE STUDY
My department offers undergraduate degree programs in CS as well
as SE, and a Masters Degree in CS. The course was open to students
meeting prerequisites from any of our students as well as students
from a Computer Technology degree at our satellite campus. 26
students in the course consented to take part in the research for
this paper: 20 undergraduate (16 CS, 2 SE, 2 CT) and 6 graduate.
This case study includes the grades, as well as qualitative data in
the form of anonymous, optional, weekly, feedback from students
to highlight student perspectives on content and topics.

4.1 Dataset
For the purposes of this paper, student grades from the 26 students
were collected for the 8 labs, 4 assignments, 4 project phases, a
project presentation, midterm and final exams, and the final course
grade. The data in its raw form is presented in Table 2.

4.2 Intra-Student Performance
In order to determine the effectiveness of the chosen method of pre-
senting topics in 3 successive deliverables (lab, assignment, project)
it was helpful to perform an intra-student analysis. The idea being
that in general there should be an upward trend as the student
gains further exposure to a particular topic. It was expected that
a student would show initial understanding (a middling grade) of
a topic in the lab, a deeper understanding (a higher grade) on the
assignments, and mastery (highest grade) on the project. As such,
this section tracks grades for 7 topics (based on the first 7 labs)
through the remainder of the course for each student and plots
these lines on graphs to examine the trends.

Below are the progressions of each deliverable:
• Lab 1→ Assignment 1→ Phase 1
• Lab 2→ Assignment 1→ Phase 1
• Lab 3→ Assignment 2→ Phase 2
• Lab 4→ Assignment 3→ Phase 2

Table 2: Student Grades on Primary Deliverables

Labs Assignments Project Exams
1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 P M F Grade

90.00 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 91.43 94.29 117.86 100.00 99.63 92.00 91.00 100.89
95.00 90.00 100.00 90.00 100.00 100.00 100.00 100.00 91.67 96.67 100.00 100.00 95.29 94.71 98.82 97.65 91.38 100.00 91.00 99.36
100.00 80.00 65.00 85.00 100.00 100.00 100.00 100.00 97.00 100.00 100.00 100.00 91.43 94.29 117.86 100.00 99.63 87.38 97.33 98.59
80.00 100.00 75.00 80.00 100.00 100.00 100.00 100.00 100.00 100.00 97.00 100.00 91.43 94.29 117.86 100.00 99.63 84.88 78.33 96.42
90.00 70.00 75.00 95.00 100.00 70.00 80.00 100.00 97.00 84.00 74.00 100.00 71.43 83.57 87.86 97.14 95.50 90.88 97.00 91.86
45.00 90.00 15.00 65.00 100.00 85.00 100.00 100.00 100.00 100.00 98.00 100.00 71.43 83.57 87.86 97.14 95.50 90.00 77.67 90.17
80.00 90.00 65.00 75.00 55.00 50.00 90.00 100.00 100.00 86.67 85.00 81.67 95.29 94.71 98.82 97.65 91.38 76.88 73.33 89.13
55.00 90.00 90.00 85.00 90.00 100.00 100.00 100.00 100.00 98.00 95.00 83.00 71.43 83.57 87.86 97.14 95.50 63.00 76.33 87.27
65.00 65.00 25.00 75.00 60.00 0.00 70.00 100.00 91.67 93.33 80.83 100.00 77.65 66.47 78.24 85.88 87.50 87.50 76.00 83.35
95.00 80.00 25.00 85.00 75.00 85.00 100.00 90.00 100.00 98.33 86.67 79.17 80.00 75.29 70.59 90.59 87.63 60.38 62.67 81.44
60.00 100.00 85.00 80.00 55.00 0.00 100.00 80.00 100.00 100.00 50.83 95.83 90.59 61.76 68.82 62.94 83.75 72.25 83.00 81.38
90.00 40.00 25.00 0.00 0.00 55.00 80.00 100.00 100.00 91.67 92.50 87.50 77.65 66.47 78.24 85.88 87.50 67.25 72.00 80.02
80.00 40.00 15.00 45.00 40.00 95.00 90.00 90.00 100.00 96.67 88.33 79.17 80.00 75.29 70.59 90.59 87.63 44.00 59.67 77.56
75.00 70.00 65.00 80.00 0.00 75.00 65.00 70.00 91.67 74.17 80.00 69.17 90.59 61.76 79.41 58.82 86.38 78.13 78.67 77.44
85.00 85.00 25.00 75.00 25.00 80.00 80.00 100.00 87.50 91.67 92.50 75.00 47.06 72.94 68.82 62.94 83.75 85.75 73.67 77.23
100.00 75.00 55.00 55.00 55.00 55.00 100.00 80.00 95.83 81.67 86.67 75.00 90.59 61.76 79.41 58.82 86.38 70.25 62.67 76.96
80.00 50.00 25.00 65.00 65.00 45.00 90.00 40.00 95.83 95.00 80.00 83.33 90.59 61.76 79.41 58.82 86.38 58.13 67.33 75.87
70.00 20.00 15.00 75.00 55.00 15.00 25.00 60.00 58.33 96.67 86.67 83.33 57.65 81.18 82.35 83.53 82.13 54.50 72.00 74.99
10.00 70.00 25.00 0.00 60.00 45.00 65.00 100.00 87.50 70.83 90.00 51.67 77.65 66.47 78.24 85.88 87.50 60.75 70.00 74.94
70.00 55.00 25.00 70.00 40.00 25.00 30.00 80.00 95.83 81.67 58.33 75.00 77.65 66.47 78.24 85.88 87.50 57.00 63.33 74.40
35.00 50.00 15.00 50.00 55.00 95.00 90.00 30.00 79.17 91.67 94.17 83.33 80.00 75.29 70.59 90.59 87.63 26.00 46.33 72.02
70.00 65.00 15.00 75.00 65.00 45.00 60.00 90.00 95.83 98.33 24.17 87.50 57.65 81.18 82.35 83.53 82.13 82.13 29.67 71.62
80.00 80.00 45.00 70.00 60.00 30.00 45.00 60.00 58.33 96.67 80.83 47.50 80.00 75.29 70.59 90.59 87.63 44.50 52.00 70.93
65.00 40.00 15.00 65.00 50.00 30.00 0.00 0.00 66.67 55.00 56.67 0.00 57.65 81.18 82.35 83.53 82.13 41.75 56.00 62.89
55.00 40.00 15.00 60.00 0.00 0.00 70.00 0.00 58.33 0.00 35.00 0.00 95.29 94.71 98.82 97.65 91.38 30.25 40.33 61.06
0.00 20.00 0.00 25.00 0.00 0.00 0.00 0.00 87.50 41.67 12.50 41.67 90.59 61.76 79.41 58.82 86.38 37.00 48.33 55.31

70.00
(24.8)

67.12
(23.1)

42.31
(30.2)

66.35
(24.8)

57.88
(32.4)

56.92
(35.3)

74.23
(30.2)

75.77
(33.3)

89.83
(13.6)

85.40
(22.2)

77.91
(23.5)

76.11
(27.1)

79.92
(13.1)

77.31
(11.9)

85.05
(14.6)

84.69
(14.5)

89.21
(5.3)

67.02
(20.4)

69.06
(16.6)

80.12
(11.48)

• Bottom Row is the course average (with the standard deviation in parentheses).
• Right Column is the student’s final course grade percentage.
• P - Presentation, M - Midterm, F - Final Exam

• Lab 5 → Assignment 3→ Phase 3
• Lab 6 → Assignment 3
• Lab 7 → Assignment 4→ Phase 4

Figure 1 presents student grades for each of the 7 sections. Each
sub-figure represents students’ grades (%) on the lab (left), assign-
ment (center), and project (right); the one exception being Lab 6
(Simulink) as it was not incorporated in the project.

Another interesting question is whether or not a student’s per-
formance on exams is an indicator of overall performance in the
course. Figure 2 shows the students grades on the course, midterm
exam, and final exam. Grades are sorted (left to right) by descending
final grades, which is discussed in Section 5.

4.3 Overall Course Performance
In this section, results from the overall course performance are
presented, including averages, medians, grade distributions and
other interesting findings. The high-level view of the course can
be captured by looking at the mean and median grades over all
students in the course. These course statistics are as follows:Mean:
80.12% (with a standard deviation of 11.48),Median: 77.50%. These
fall close to the initial target of 80% chosen at the onset of the course.
The final course grade distributions are shown in Table 2.

5 DISCUSSION
5.1 Analysis of Findings
In this section, the findings presented in the previous section are
discussed in detail with particular focus on the following questions:

• Is there an improvement between labs, assignments, & projects?
• Are exams a good indicator of final grades?
• What was learned from lab grades? Assignment grades?
Project Grades? Exam Grades?

Figure 1 is useful in discussing whether or not the methodology
of 3-fold assessment of each topic has any merit. The desired re-
sult of this methodology was that the grades would consistently
increase from lab to assignment to project; in almost all cases this
was not the result. Student grades did improve greatly from lab to
assignment but the project grades typically declined from the as-
signment. Success in this method was limited only by the students’
performance with the course project which is discussed in detail
later.

The next area of discussion asks if exams are good indicators of
overall performance in the course. While it is reasonable to expect a
correlation between each of the exams and the final grade, the focus
is on the strength of the correlation. Furthermore, low weighting
of exams means their impact is not solely based on them being a
factor of the final grade. The midterm has a correlation coefficient
of 0.8043 with the final grade and the final exam has a correlation
coefficient of 0.8238 with the final grade. While neither of these
are extremely strong it can be reasonably stated that a student’s
performance on their midterm is a decent indicator of their expected
final performance (given the specifics of this course).

In this course, the lab grades were less than desirable. While
some students excelled, many were unsuccessful in the labs which
were the initial assessment tools for each topic in the course. The
mean grade across all students and all labs was 63.82% with a me-
dian of 70.00%. It is clear that the understanding of the labs could
be improved in future offerings. While the labs introduced topics in
a low stakes environment (each lab being worth 1%) the students
still had difficulty grasping material. Assignment grades seem to be
as a whole much better in terms of overall performance. Out of 104
(26*4) assignments, only 17 received a failing grade. Throughout
the course students earned a mean grade of 82.31% on assignments

Figure 1: Course Grades (%) on Labs, Assignments, and Projects for Various Topics

Table 3: Course Grade Distributions

Letter
Grade A+ A A- B+ B B- C+ C C- D+ D D- F

Percent Range >97% 93
- 96.99%

90
- 92.99%

87
- 89.99%

83
- 86.99%

80
- 82.99%

77
- 79.99%

73
- 76.99%

70
- 72.99%

67
- 69.99%

63
- 66.99%

60
- 62.99% <60%

of Students 3 1 2 2 1 3 3 5 3 0 0 2 1

Figure 2: Midterm, Final Exam, and Course Grades

(standard deviation of 22.9); the median grade was 90.83%. This
shows that given more time to work on the assignments, the ability
to discuss problems during office hours, and time to check over
work, the students were able to improve understanding and per-
formance. Project grades present a real mystery in this course. It
was always the intent that the project, as the final opportunity to
work on a particular skill, would be the strongest grade for each
student. The mean grade across all students on the 4 phases of
the project was 81.74% (standard deviation: 13.9) with the median
almost identical at 81.76%. If the goal of the lab-assignment-project
progression of grades is to be successful in the future there needs
to be an adjustment of difficulty in some (or all) of the three differ-
ent assessment mediums. This is discussed later in the section on
lessons learned from this offering.

5.2 Student Feedback
As an initial offering it was important to solicit feedback from stu-
dents as frequently as possible. A weekly survey was administered
to students in the course allowing them the opportunity to pro-
vide anonymous feedback. The survey was entirely optional but
students were given time each week to fill them out. There were 3
standard questions asked every week, and varying questions asked
that related to the particular point in the course. The quantitative
results are presented first, followed by the qualitative.

The first weekly question (“Rate your overall satisfaction with
the lectures this week. (on a scale of 1-5)”); can be seen in Table 4.

Table 4:Weekly Responses to “Rate your overall satisfaction
with the lectures this week.” (on a scale of 1-5)

Week (Topics) Average Score
1 (Introduction) 4.4
2 (Meta-Models) 4.0
3 (Eclipse Modeling Framework) 2.0
4 (Models as Primary Artifacts) 3.9
5 (Models as Primary Artifacts) 3.3
6 (Behavioral Modeling) 3.7
7 (Behavioral Modeling/Midterm Review) 3.5
8 (Midterm / Papyrus-RT) 3.3
9 (Papyrus-RT / Simulink) 4.1
10 (Simulink / MDE in Industry) Not Administered
11 (Model-Based Testing) 3.6
12 (Model-Based Testing / Project) 4.3
13 (Project / MDE in Academia) 3.8
14 (Presentations / Exam Review) Not Administered

The second quantitative result is to the question “How would
you rate the effectiveness of the assignments so far in this course
in helping you understand and apply the content?” (on a scale
of 1-5). This question was asked in the 6th week of the course
and the average response was 3.1 and likely reflected the students’
dissatisfaction with the lab grades on the first several labs.

The remainder of questions are all qualitative questions, some
weekly and some asked only once. These can be found in Table 5.

5.3 Lessons Learned
This section presents a retrospective look at the course taking
into consideration student feedback and instructor observations.
Essentially these are the lessons learned and how they can/will be
addressed for future offerings of this course. For any prospective
MDSE instructors keep these lessons in mind.

LabDeadlines andExamples: One of themost common points
of student feedback was the time allowed for labs and the inability
to complete them on time. Initially students were given 80 minutes
but this led to many students not completing labs. After reviewing
the weekly feedback and student grades, I decided to allow until
midnight the day of the lab to complete the work. This change
mitigated many of the issues and student feedback was positive.
Another concern was not being exactly sure what was expected. A

Table 5: Qualitative Question Responses

Question (Week Asked) Selected Responses
Identify any concepts you
had difficulty understand-
ing this week in class. (All
Weeks)

"The book is difficult to understand", "How to
use EMF", "Statecharts", "Just small things with in-
stalling matlab", "Some concepts in Model based
testing"

Please provide any addi-
tional feedback (things you
liked, things you didn’t like,
things you want more/less
of, etc.) (All Weeks).

"The lab is too long to finish in one hour."
(many similar responses), "I like the in-class ex-
amples and activities. I find them very helpful",
"Group / class activities were helpful... it is use-
ful to discuss concepts with classmates to solidify
understanding of lecture materials.", "I expect to
move very deep on one tool rather than just scratch
the surface of many tools."

What are your thoughts on
the course material so far?
(interesting? complex? etc.)
(Week 2)

"pretty straightforward", "It is interesting and ap-
plicable in today’s environment", "Interesting but
difficult to grasp"

What is the MOST im-
portant/valuable thing you
have learned in the course
so far? (Week 8)

"EMF", "thinking with more abstraction", "The con-
cept of behavioral modelling", "How useful models
can be for code generation"

What skills have you
learned in this course that
you find useful for your
future? (Week 12)

"Modelling tools", "Reinforcing testing coverage cri-
teria", "Generating code from models and testing
usingmodels, which saves a ton of time andmoney.",
"Increasing level of abstraction to address and solve
problems. With different levels of abstraction, com-
munication to different sets of people (different
fields) become easier."

suggestion that came up later in the course was to spend the first
10 minutes of the lab session demonstrating a solution to a simi-
lar problem so the students know the format of what is expected.
This suggestion was not incorporated in this offering due to time
constraints but will be in the future.

Technology Issues: Another highly reported issue with the
course was the technology issues faced by many students. As the
course was a late addition to the department’s offerings, the soft-
ware (EMF, Papyrus-RT, Simulink, etc.) was not installed on lab ma-
chines and the students needed to install them on personal devices.
While in-depth tutorials were provided, students faced sufficient
issues installing and configuring tools (primarily Papyrus-RT). For
the next offering of the course these tools have already been in-
stalled on the lab image. Several students noted concern with using
a wide variety of tools for only short periods of times rather than
learning one tool in depth. While this is more of a high-level issue,
it does raise a distinct lack of one single tool that implements MDSE
topics in an end-to-end manner rather than stringing together tools.
A solution to this may come in the form of a new domain-specific
modeling language aimed specifically at teaching model-driven
software engineering.

In Class Demonstrations: There was concern raised about
the speed of in class demonstrations. Given an 80-minute window I
opted to describe the theory behind tools and demonstrate them in
one session. Based on initial feedback I began creating videos of the
demos for students to follow later and this was well received. Even
with the videos, students raised concerns with the speed as they
wanted to be able to follow along in real time and ask questions.
The proposed response to this issue is that in future offerings I plan
to divide the theory and practice into two sessions: one to cover
the ideas and concepts and one to work with tools and complete a
small example (possibly outside of class as a tutorial).

Project & Assignment Difficulty: There is a clear disparity
in the difficulty of the assignments and project in the course that

needs to be addressed. Based on the 3 tiered system discussed
previously, the intent is to improve student understanding from
labs to assignments to the project. The decrease observed from
assignments to projects could be due to the assignments not being
difficult enough, the project being too difficult, or some combination
of these (which is most likely). This problem can be addressed by
creating assignments that are more on par with what is expected in
the project, and a project that is manageable by a group of students
with non-expert levels of experience.

6 CONCLUSION
For a first foray into teaching model-driven software engineering
in this department, the experience was a success. By the end of
the course students showed an interest in the topic and its applica-
tions to software engineering. The method of lab→ assignment→
project worked with relative success, and given an adjustment of
difficulty, will likely show further improvement. While there is no
easy fix to the ‘many tools in little depth’ issue presented it could
be solved through the introduction of a teaching focused model-
ing language. I have a strong desire to continue working towards
improving the course with the ultimate goal of incorporating it
into our department’s curriculum as a permanent course in our
SE program. Considering the prevalence of MDSE in industry we
want to produce successful students upon graduation. With a solid
foundation, it is clear that we’ll make modelers out of 'em yet!
REFERENCES
[1] Scott Ambler. 2002. Agile modeling: effective practices for extreme programming

and the unified process. John Wiley & Sons.
[2] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-driven software

engineering in practice. Synthesis Lectures on Software Engineering 3, 1 (2017),
1–207.

[3] Peter J Clarke, Yali Wu, Andrew A Allen, and Tariq M King. 2009. Experiences
of teaching model-driven engineering in a software design course. In Online
Proceedings of the 5th EducatorsâĂŹ Symposium of the MODELS Conference. 6–14.

[4] Draw.io. 2018. Draw.io - About Us. https://about.draw.io/about-us/
[5] Eclipse Foundation. 2018. Eclipse Modeling Framework (EMF). https://www.

eclipse.org/modeling/emf/
[6] Eclipse Foundation. 2018. Papyrus-RT. https://www.eclipse.org/papyrus-rt/
[7] Abdelwahab Hamou-Lhadj, Abdelouahed Gherbi, and Jagadeesh Nandigam. 2009.

The impact of the model-driven approach to software engineering on software
engineering education. In Information Technology: NewGenerations, 2009. ITNG’09.
Sixth International Conference on. IEEE, 719–724.

[8] Stuart Kent. 2002. Model driven engineering. In International Conference on
Integrated Formal Methods. Springer, 286–298.

[9] Ludwik Kuzniarz and Miroslaw Staron. 2005. Best practices for teaching UML
based software development. In International Conference on Model Driven Engi-
neering Languages and Systems. Springer, 320–332.

[10] Mathworks. 2018. Simulink. https://www.mathworks.com/products/simulink.
html

[11] Modeliosoft. 2018. Modelio Home Page. https://www.modelio.org/
[12] Bran Selic. 1998. Using UML for modeling complex real-time systems. In Lan-

guages, compilers, and tools for embedded systems. Springer, 250–260.
[13] Richard Soley et al. 2000. Model driven architecture. OMG white paper 308, 308

(2000), 5.
[14] Matthew Stephan. 2017. Challenges in Teaching Modeling in Agile Software

Engineering Courses. In International Conference on Model Driven Engineering
Languages and Systems - Educators Symposium at MoDELS. 4pp.

https://about.draw.io/about-us/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/papyrus-rt/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.modelio.org/

	Abstract
	1 Introduction
	1.1 Motivation

	2 Background & Related Work
	2.1 Model-Driven Software Engineering
	2.2 Teaching MDSE

	3 Course Overview of CSE 470E / 570E
	3.1 Course Learning Outcomes
	3.2 Deliverables
	3.3 Course Textbook
	3.4 Technologies Used

	4 Case Study
	4.1 Dataset
	4.2 Intra-Student Performance
	4.3 Overall Course Performance

	5 Discussion
	5.1 Analysis of Findings
	5.2 Student Feedback
	5.3 Lessons Learned

	6 Conclusion
	References

