
IML: Towards an Instructional Modeling Language

Eric J. Rapos and Matthew Stephan
Department of Computer Science & Software Engineering,

Miami University, Oxford, OH, USA
{rapose, stephamd}@miamioh.edu

Keywords: Modeling Languages, Model-Driven Engineering, Model Education, Domain-Specific Modeling Language,
Meta-Model, Model Transformation, Model-Based Testing

Abstract: Existing software modeling languages and tooling often contain features far beyond the comprehension of
novice users. Additionally, tools focus on specific aspects of the model-driven software engineering (MDSE)
process with little to no connection between various tools, phases, and applications. This paper describes our
current work and project plans to develop a single modeling language that is aimed at teaching MDSE at the
university level. The Instructional Modeling Language (IML), which implements both graphical and textual
modeling paradigms, centres around a single tool that includes functionality for various modeling techniques
and is not bloated with the full functionality that has been demonstrated to cause students to become over-
whelmed when introduced to numerous tools at once. IML includes and describes crucial MDSE concepts
and learning milestones including functionality for meta-modeling, instance creation, model transformations,
real-time system modeling, code generation, model-based testing, and others. Ultimately, our goal is for IML
to be used by instructors to introduce MDSE into their curriculum in a lightweight, easy-to-instruct manner.
This includes industrial education to introduce employees with little or no modeling experience to MDSE
concepts and applications. In this paper, we describe our plans for developing IML through four phases, our
current progress including IML’s scope and meta-model, our prototype, and future plans and anticipated chal-
lenges. Our hope is to continue engaging the MDSE community at the conference for feedback, suggestions,
and for volunteers for case study and trial adoption.

1 INTRODUCTION

Model-Driven Software Engineering (MDSE) has
been gaining traction in software development and
engineering, particularly in embedded and real-time
systems (Hutchinson et al., 2011). The uptake in
usage in industry has led to a shortage of trained
graduates with appropriate knowledge and skills in
MDSE (Hutchinson et al., 2014). While many insti-
tutions have introduced courses in modeling (shown
through increasing participation in the Educator’s
Symposium of the MoDELS conference), the tool
support and languages that currently exist are cumber-
some in scope and not explicitly designed for teach-
ing. While many languages exist for teaching pro-
gramming (Mannila and de Raadt, 2006), the same
cannot be said of modeling languages. There is sig-
nificant positive impact when using the model-driven
approach in software engineering education (Hamou-
Lhadj et al., 2009), however it is important that it be
introduced as effectively as possible.

This position paper presents our work in progress
towards the development of a modeling language
intended to help teach modeling to university stu-
dents. We plan for the Instructional Modeling Lan-
guage (IML) to be a light-weight language that in-
troduces multiple key concepts of MDSE, such as
meta-modeling, model transformation, simulation,

and code generation. It will do so in a single tool envi-
ronment that neither has a cumbersome learning curve
nor does it feature overwhelmingly complex struc-
tures and overhead. IML is, to the best our knowl-
edge, the first modeling language targeted specifically
at teaching MDSE skills and features. Thus, IML may
be considered a domain specific modeling language
(DMSL), where the domain is MDSE education.

To fully realize IML’s implementation, we will de-
velop a set of tools will to showcase its features. Thus,
we use the term IML to refer to both the modeling
language and the tool framework we propose to im-
plement it. We based IML upon UML class diagrams
for its core functionality, and implementing several
of its key features while removing some of the more
cumbersome aspects of UML in favour of teaching
concepts simply. This differs from lightweight lan-
guages, such as lightweight UML, because it facili-
tates the complete MDSE process and is intended pri-
marily for education.

We begin by presenting out motivations and
planned contributions, followed by relevant work in
Section 2. Section 4 presents the overall details of
the proposed IML, detailing the 4 phases of develop-
ment. Section 5 presents our current progress to date
and Section 6 presents the future work. Finally in Sec-
tion 7 we conclude with a summary of the proposed
and completed work.



1.1 Motivation

The main motivation for our work comes from our
previous experience teaching a course in MDSE
to students with minimal to no exposure to any
of the main modeling concepts. Their difficulties
stemmed from the unavailability of a single tool capa-
ble of demonstrating the many aspects of MDSE, and
the technical challenges associated with students in-
stalling and maintaining several different tools. This
ranged from open source, to academic, and propri-
etary systems. The experience is shared by others
in the community struggling with similar issues (Ra-
pos, 2018). This is similar to the course offered by
Poruban et al. whereby they had to use ”several dif-
ferent practical tools” instead of a single tool in order
to teach MDSE to their graduate students (Poruban
et al., 2014).

The driving force behind the IML is rooted in two
main areas: i) the need for a single tool capable of
demonstrating the full spectrum of MDSE topics, and
ii) the desire for a light-weight tool that allows users
to learn concepts easier than full heavy-weight tools,
and transfer them to those full tools after mastering
the basics.

1.2 Contributions
In order for the IML to become successful, we plan on
making four contributions which we describe in detail
in this paper.

• a light-weight, yet fully functional, modeling lan-
guage geared towards teaching MDSE;

• a set of example models and material to accom-
pany the language;

• a facility for customization of the IML DSML for
individual use/instruction; and

• a demonstration of the effectiveness of the DSML
through case studies, examples and existing
evaluations of teaching languages (Mannila and
de Raadt, 2006).

The goal of our IML project is to develop a fully
modularized and simple, yet comprehensive, DSML
specifically tailored to teaching MDSE to college/u-
niversity level students with some prior program-
ming and system design experience. Beyond being
a language to teach MDSE, a secondary goal for our
project is to have the IML robust enough for use in
very small scale modeling projects. That is, it will
be a fully functional language that is useful for rudi-
mentary real-world systems. Ideally it would find a
place in the world of Agile modeling, where it could
be used as a means of lightweight rapid prototyping
systems to produce early results. Further, we intend

for the models created and managed by the IML to
be transferable to existing, more robust tools, in order
for the lightweight rapid prototypes to be portable to
full-scale development, if desired.

2 BACKGROUND AND RELATED
WORK

In this section, we briefly overview DSMLs as the
IML is a DSML intended for teaching. We also sum-
marize existing work on teaching-specific modeling
languages to both position our work and to utilize and
learn from their experiences.

2.1 Domain-Specific Modeling
Languages

DSMLs are a tried and tested way of facilitating
MDSE by allowing engineers to create and manage
modeling artifacts using domain-specific abstractions,
concepts, and terms with which they are familiar. The
DSML meta-models and their environments and tools
are designed in such a way that facilitate full code
generation (Amyot et al., 2006; Kelly and Tolvanen,
2008). They have been shown to be very effective in
practice (Kärnä et al., 2009), and exist for many dif-
ferent domains including adaptive systems (Fleurey
and Solberg, 2009), business models (Sonnenberg
et al., 2011), computer games (Furtado and Santos,
2006), multiagent systems (Hahn, 2008), and others.
In our case, we are developing a DSML for MDSE
education.

2.2 Education-Specific Languages

In a comparison of languages for teaching intro-
ductory programming, Mannila and Raadt summa-
rize seventeen criteria for evaluating introductory pro-
gramming languages based on a survey of the field
and languages considered ’teaching languages’ (Man-
nila and de Raadt, 2006). Some examples include a
language that is suitable for teaching, has the ability
to apply physical analogies, features a general frame-
work, is interactive and features rapid code develop-
ment and more. They organize their criteria into four
categories: learning, design and environment, support
and availability, and its ability to go beyond introduc-
tory programming. We plan to use these seventeen
criteria and four categories to guide not only the de-
sign of the IML but also our planned evaluations and
case studies.

Silva-Maceda et al. performed an experiment
demonstrated that allocating more time for students
to absorb concepts, rather than better programming
languages (C versus Raptor), was more of a factor in



student success in learning traditional code program-
ming (Silva-Maceda et al., 2016). With the IML, our
goal is to allow for students to spend more time fo-
cusing on the concepts rather than the individual tools
and their intricacies.

Van Roy et al. demonstrated that the specific pro-
gramming paradigm made no difference in student
learning, but that the language they used was the key
factor (Van Roy et al., 2003). This supports our mis-
sion in creating the IML, a language focused primar-
ily on modeling education.

3 IML OVERVIEW
In this section we present an inital overview of the
Instructional Modeling Language, specifically its in-
tended features and our initial meta-model.

3.1 Feature Selection

Based on our personal academic and industrial expe-
riences in modeling, and our research on MDSE ed-
ucation including the recommendations provided in
the ongoing work towards an MDSE body of knowl-
edge (Ciccozzi et al., 2018), we chose the following
modeling concepts for inclusion in the IML,

1. conceptual system modeling
2. meta-modeling and instance creation
3. model-to-model and model-to-text model trans-

formations
4. behavioral modeling
5. model execution and simulation
6. code generation
7. model-based testing and model validation

This list is by no means an exhaustive and com-
plete list of MDSE topics. However, we contend it
forms the basis of a core understanding and is the
minimal set of concepts for us to consider IML to be
completed. Additional techniques and concepts can,
and likely will, be added in successive releases based
on practitioner and academic feedback.

3.2 IML Meta-Model

In order for us to demonstrate the light-weight na-
ture of the IML and the limited subset of UML model
features it will implement, it was imperative that we
first develop a meta-model for the language. Figure 1
presents the IML meta-model, which we developed as
an Ecore model within the EMF. When compared to
the Ecore meta-model, the meta-model for IML con-
tains a constrained set of data types, and is simplified
greatly in how relations are expressed

IML describes a simplified version of UML class
diagrams, containing classes with a name and at-
tributes, and a limited set of relations between classes.
While the feature set is limited, it still allows users to
create conceptual models with a variety of data types
and relations, containing enough complexity to hone
and grasp concepts related to meta-modeling, model
creation, and the general abstraction elements associ-
ated with MDSE.

As the project progresses, it is possible that the
meta-model will evolve to adapt to necessity, but our
goal is to maintain its light-weight simplicity through-
out development.

4 IMPLEMENTING IML
In order to accomplish the goals of IML, we have

outlined a 4 phase project, which we describe in the
following subsections.

4.1 Phase 1: Conceptualization
The first phase of the project is one of the more im-
portant steps in creating an effective framework for
teaching MDSE. Our original intent was to conduct
a review of courses being taught by colleagues and
other institutions to examine the overlapping and key
topics. However a recent initiative lead by many well
established MDSE researchers and industry represen-
tatives works toward creating a Body of Knowledge
specifically for MDSE (Ciccozzi et al., 2018). This
work in progress will provide an already cultivated
list of topics that will make an excellent feature set
for the IML. We present our results in analyzing this
work and how we will incorporate it into the IML in
Section 5.

4.2 Phase 2: Implementation
The bulk of this project will focus on the implementa-
tion of the IML DSML and its supporting tools. Based
on the functionality we determine in Phase 1, we will
order concepts in sequence based on when they are
used by modelers in the typical MSDE process. For
example, conceptual system design should be early in
the process, while model-based testing and code gen-
eration will ultimately be later in the list. The reason
for this ordering is that our goal is to implement the
set of IML tools in an iterative fashion, producing a
working tool over many iterations, and adding new
functionality during each iteration.

4.2.1 Implementation Alternatives

There are currently two possible options we are con-
sidering for the development of the IML: an EM-
F/GMF based plugin to emulate similar tools, and a



Figure 1: The IML Meta-Model implemented as an Ecore Model

standalone Java based tool implemented in JavaFX.
Both of these options have pros and cons, which we
discuss below. It is our hope that the modelsward
community will provide further feedback and insights
into these options.

Eclipse Based Implementation Option Eclipse is
a well-known, heavily supported, platform that is
used in numerous tools developed in both academia
and industry. In addition to its prevalence, Eclipse
is also an open source option meaning that there are
no additional costs to the development, and students
and users of the resulting DSML will not require soft-
ware licenses in order to use the tools. This is not the
case for many of the current modeling tools. By cre-
ating an Eclipse based tool, we can leverage existing
open source plugins to Eclipse that will help imple-
ment parts of what we hope to accomplish. As an
example, the Eclipse Modeling Framework (EMF) is
an eclipse plugin itself, and could be leveraged easily
for us to incorporate in the DSML we develop. How-
ever, it would be a pared down version to remove any
high-complexity features that may bog down novice
users, leaving only the required and key educational
features.

Using this existing framework may have the pit-
fall of its associated complexities and bloat may make
its way into the IML, which directly contradicts the
goals and our vision of a light-weight framework de-
signed for education. To make use of EMF we would
have to be very careful to avoid using large numbers
of data types, obfuscate complex aspects, and provide
detailed support and documentation.

JavaFX Based Implementation Option JavaFX
is the successor to Java Swing, and is used to

create graphical interfaces to Java based programs.
By building a framework from the ground up with
JavaFX we are capable of avoiding any the complex-
ity issues that could arise from the use of EMF. This
approach allows for full control over the elements of
the modeling language that the users will be interact-
ing with. Another added benefit of a standalone Java
based application is the fact that installation will not
be an issue. This is in contrast to the Eclipse option
since Eclipse plugins can often cause issues for those
unfamiliar with the framework. Additionally, most
potential users will already have a JRE installed on
their machine1, leaving practically no installation re-
quirements.

The downside of pursuing this implementation op-
tion is that there is significantly less community and
framework support for JavaFX than there is for EMF
and GMF based solutions.

4.2.2 Model Representation Format

Another major milestone in the development of our
DSML is determining the appropriate format for en-
coding IML models textually. In keeping with the
open source mentality, as well as being able to reuse
as much as possible, we have decided to represent the
models for this DSML using an XML representation.
This type of representation is widely accepted and
used in many current modeling tools, and allows us to
use existing naming conventions, representations and
more to ensure smooth transitions from our modeling
language to full-fledged modeling tools.

1https://web.archive.org/web/
20100925204716/https://java.com/en/download/
faq/whatis_java.xml



4.3 Phase 3: Validation, Verification,
and Quality Assurance

As each feature is implemented in the previous phase,
they will be tested independently for correctness,
completeness, and quality. This interleaving of phases
2 and 3 will allow concurrent work to be done by all
those involved in the project and will also ensure an
iterative development of the modeling language. This
will allow for individual aspects of the IML to be dis-
seminated earlier on, rather than waiting for the entire
framework. This will allow for additional community
feedback and cyclical improvements throughout de-
velopment.

Beyond modularity, this iterative approach will al-
low for dedicated testing of smaller units of imple-
mentation, which is a key factor in producing quality
software tools (Ammann and Offutt, 2016). After we
have implemented all phases and tested them individ-
ually, we will take part in several levels of integration
testing to ensure the entire product suite works harmo-
niously as a complete end-to-end modeling tool (Am-
mann and Offutt, 2016). This will consist of several
case studies, aimed at reproducing results from other
mainstream modeling tools. When all aspects of the
system work together, we will consider the system
complete and we will proceed to the fourth and final
phase.

4.4 Phase 4: Documentation and
Support

Since one of the main purposes of the IML is its use
in teaching, a large component of its success is depen-
dent on proper documentation and support.

During the completion of the IML, we will fo-
cus efforts on providing supporting materials to ac-
company delivery of the tool, including documen-
tation for installation, troubleshooting, the creation
and packaging of several example models, and more.
We will validate and verify this documentation during
this phase by soliciting feedback from students in our
modeling course, asking for peer reviews from both
modeling practitioners and educators, and other tech-
niques. We will also produce demonstration videos
for instructors to use in course offerings and/or novice
modelers to use in self-learning modeling principles.

In addition to the educational support, this phase
will also include us developing support for the tool
by means of marketing through websites, published
works, forums, and others. We will note its availabil-
ity to instructors, primarily those involved in MDE
education and those responsible for the push towards
the MBE body of knowledge (Ciccozzi et al., 2018),
and more broadly via the modeling community.

5 CURRENT PROGRESS
This section presents the current progress in our

realization of the IML. It is rooted in three main areas:
selection of IML’s features, initial development of the
IML meta-model, and early prototype development.

5.1 Current Prototype
In an attempt to begin working on the IML, an early
prototype has been developed using JavaFX. This sec-
tion discusses the various aspects that we have cur-
rently implemented.

5.1.1 Overall Tool Layout

The first necessary step was the creation of the tools
overall layout for its user interface. Since one of our
other implementation options was an Eclipse based
approach, along with our desire for the IML to allow
users to easily transition to existing tools in the mod-
eling domain, we opted for a GUI that was visually
similar to Eclipse and its derivative plugins. Thus, we
opted for a tool with a canvas in the center capable of
displaying models or a text editor; a file/tree browser
to the left; a tool box on the right, which currently
contains placeholders for tools to be added later;and
a view for displaying properties and other details on
the bottom. JavaFX uses a layout manager that made
maintaining these layouts rather simple, and easy to
maintain independently in a plug and play manner.
We present the main IML window in Figure 2.

5.1.2 Model Canvas

One of the main features of our early prototype is the
model drawing canvas. As a modeling tool, it is im-
perative to be able to implement the creation of IML
models accurately. Our current prototype allows the
creation of various IML-named classes on the can-
vas, which can then have various typed and named
attributes added to them. Each of the classes are ca-
pable of having various relations between them, for
example, composition, reference, and inheritance, us-
ing the standard accepted notations.

Figure 2 shows an example model we have drawn
on the canvas. It illustrates a university made up
of departments, each of which reference certain fac-
ulty members that inherit features from the general
Faculty class. Our current implementation does not
present the cleanest lines, but its main purpose is
for proof-of-concept of function, and should devel-
opment continue using JavaFX, we will give further
attention to UI aspects.

5.1.3 Model Format - Read and Write
The last major aspect of our current work relates to
the model formatting. In addition to being able to



Figure 2: An example IML Model in the tool’s model drawing canvas

draw models on the canvas, the IML is capable of sav-
ing the models to an XML based format, as well as
reading in an XML input file and rendering the cor-
responding model on screen for further editing. We
present an example XML representation for the model
shown in Figure 2 in the code listing in Figure 3.

Each class is its own object, with attributes for its
name, and position. Position includes four numeri-
cal values: X position, Y position, height, width, as
shown on line 3. Every class then has each of its
attributes embedded. Each attribute is stored with a
name and type, for example, line 4. After each of the
classes are defined in the XML file either by the IML
tool or an external tool, the connections between them
are interpreted by the IML tool as individual objects,
containing a source, destination, and type such as, in-
heritance, reference, or composition, as we illustrate
on line 26.

6 FUTURE WORK

Our immediate next step is to determine whether
to continue development with the JavaFX method, or

to switch to the Eclipse based toolset of EMF, GMF,
et cetera. While the standalone nature of our current
tool provides more flexibility in what is ultimately de-
veloped, the steep learning curve and lack of commu-
nity support for JavaFX may make it a less viable op-
tion. However, a tool that is significantly more light-
weight than existing modeling tools will help set the
IML apart from cumbersome tools, which is one of
the IML’s main goals.

Regardless of which option we choose, the re-
maining future work involves us extending our cur-
rent progress to implement a fully functional first it-
eration of IML. Recall, our intent is to iteratively add
functionality from the list of features. Our first prior-
ity is conceptual system modeling, which is the abil-
ity to draw and manipulate models similar to existing
UML tools; a feature nearly completely implemented
in the current prototype. The remaining features miss-
ing from the first iteration are the ability to manipulate
properties via the properties tab, and model check-
ing for conformance to the a specified meta-model.
Specifically, the IML meta-model in the first iteration,
and custom meta-models in later iterations.



Figure 3: Sample XML representation of IML models

Following the completion of the the first iteration,
the next logical step is the implementation of model
transformations within IML. This involves the abil-
ity to provide two custom meta-models and a set of
transformation rules to be able apply automatically
the transformation from any instance models that con-
form to the source meta-model, thus creating corre-
sponding instances that conform to the source meta-
model.

Our minimum viable product (MVP) for the IML
and tool suite entails the implementation of concep-
tual modeling including conformance checking to a
specified meta-model, the ability to create custom
meta-models and instance models, and model trans-
formations. This MVP milestone will be useful in
teaching several of the important high-level concepts
in MDSE. Beyond this MVP, the remaining features
will be implemented one by one until we have intro-
duced the full feature set. We now describe each fea-
ture in detail.

To incorporate behavioral modeling into IML, the
goal is to provide two alternative methods that em-
ulate leading tools. The first method will be the
use of state machines to implement behavior, much
like existing UML-RT tool implementations, such as
Papyrus-RT2 which is the current focus of ongoing re-

2https://www.eclipse.org/papyrus-rt/

search (Hili et al., 2017; Kahani et al., 2017). Keep-
ing with the simplified nature of the IML, this will be
a significantly reduced subset of the UML-RT profile
to demonstrate functionality of existing tools, such as
Papyrus-RT, without the need to cover some of UML-
RT’s more complex implementation issues. The sec-
ond method is to implement block based data-driven
behavior in the style of Simulink models, again using
a significantly reduced block library to demonstrate
functionality. For each of these behavioral modeling
methods, IML will include some mechanism of ex-
ecution and/or simulation. The intent is to be able
to walk though execution of the models, and provide
simulated inputs to observe the system’s responses.

For code generation, our intent will be to generate
functional code, in Java for example, for the behav-
ioral models that can be run independently from the
IML framework. The focus of this aspect of IML is
to demonstrate the power of MDSE to produce source
code from graphical models.

The final area of work for us in development
of the IML is related to model-based testing and
model-checking techniques. We have yet to deter-
mine the specifics, but we will leverage existing test-
ing technologies, such as test case generation through
symbolic execution for the UML-RT based mod-
els (Zurowska and Dingel, 2012; Rapos and Dingel,
2012), and some form of Simulink model style of test-



ing capable of generating full test suites that apply to
both simulation and code generation, while consider-
ing the evolution of systems and their tests (Matinne-
jad et al., 2016).

7 CONCLUSIONS
The goal of the IML and its framework is to pro-

vide computer science and software engineering edu-
cators adequate tool support to effectively incorporate
MDSE into their curriculum, either as modules in ex-
isting courses or, ideally, as full courses on the topic.
We envision IML as a modeling language that is ca-
pable of producing small-scale and simpler working
software systems, but one that is not burdened by the
cumbersome nature of many existing languages and
tools available currently. By stripping away many
low-level details and leaving only what is necessary
for a student to master modeling techniques such as
meta-modeling, model transformations, model-based
testing, and others, IML aims to fill a sufficient void
in educational focused software.

REFERENCES
Ammann, P. and Offutt, J. (2016). Introduction to software

testing. Cambridge University Press.
Amyot, D., Farah, H., and Roy, J.-F. (2006). Evaluation of

development tools for domain-specific modeling lan-
guages. In International Workshop on System Analysis
and Modeling, pages 183–197. Springer.

Ciccozzi, F., Famelis, M., Kappel, G., Lambers, L., Mosser,
S., Paige, R. F., Pierantonio, A., Rensink, A., Salay,
R., Taentzer, G., Vallecillo, A., and Wimmer, M.
(2018). Towards a body of knowledge for model-
based software engineering. In MODELS, pages 82–
89, New York, NY, USA. ACM.

Fleurey, F. and Solberg, A. (2009). A domain specific
modeling language supporting specification, simula-
tion and execution of dynamic adaptive systems. In
MODELS, pages 606–621. Springer.

Furtado, A. W. and Santos, A. L. (2006). Using domain-
specific modeling towards computer games develop-
ment industrialization. In OOPSLA workshop on
domain-specific modeling (DSM06).

Hahn, C. (2008). A domain specific modeling language
for multiagent systems. In Joint conference on
Autonomous agents and multiagent systems, pages
233–240. International Foundation for Autonomous
Agents and Multiagent Systems.

Hamou-Lhadj, A., Gherbi, A., and Nandigam, J. (2009).
The impact of the model-driven approach to software
engineering on software engineering education. In
International Conference on Information Technology:
New Generations, pages 719–724.

Hili, N., Dingel, J., and Beaulieu, A. (2017). Modelling and
code generation for real-time embedded systems with

uml-rt and papyrus-rt. In International Conference on
Software Engineering Companion, pages 509–510.

Hutchinson, J., Rouncefield, M., and Whittle, J. (2011).
Model-driven engineering practices in industry. In
International Conference on Software Engineering,
pages 633–642. ACM.

Hutchinson, J., Whittle, J., and Rouncefield, M. (2014).
Model-driven engineering practices in industry: So-
cial, organizational and managerial factors that lead to
success or failure. SCP, 89:144–161.

Kahani, N., Hili, N., Cordy, J. R., and Dingel, J. (2017).
Evaluation of uml-rt and papyrus-rt for modelling
self-adaptive systems. In International Workshop on
Modelling in Software Engineering, pages 12–18.

Kärnä, J., Tolvanen, J.-P., and Kelly, S. (2009). Evaluating
the use of domain-specific modeling in practice. In
OOPSLA workshop on Domain-Specific Modeling.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-specific mod-
eling: enabling full code generation. John Wiley &
Sons.

Mannila, L. and de Raadt, M. (2006). An objective compar-
ison of languages for teaching introductory program-
ming. In Baltic Sea conference on Computing educa-
tion research, pages 32–37. ACM.

Matinnejad, R., Nejati, S., Briand, L. C., and Bruckmann,
T. (2016). Automated test suite generation for time-
continuous simulink models. In Proceedings of the
38th International Conference on Software Engineer-
ing, pages 595–606, New York, NY, USA. ACM.

Poruban, J., Bacikova, M., Chodarev, S., and Nosal, M.
(2014). Pragmatic model-driven software develop-
ment from the viewpoint of a programmer: Teaching
experience. In FedCSIS, pages 1647–1656. IEEE.

Rapos, E. J. (2018). We’ll make modelers out of ’em yet:
Introducing modeling into a curriculum. In EduSymp
18, Educators Symposium at MODELS. ACM/IEEE.

Rapos, E. J. and Dingel, J. (2012). Incremental test case
generation for uml-rt models using symbolic execu-
tion. In International Conference on Software Testing,
Verification and Validation, pages 962–963.

Silva-Maceda, G., Arjona-Villicana, P. D., and Castillo-
Barrera, F. E. (2016). More time or better tools? a
large-scale retrospective comparison of pedagogical
approaches to teach programming. IEEE Transactions
on Education, 59(4):274–281.

Sonnenberg, C., Huemer, C., Hofreiter, B., Mayrhofer, D.,
and Braccini, A. (2011). The rea-dsl: A domain spe-
cific modeling language for business models. In In-
ternational Conference on Advanced Information Sys-
tems Engineering, pages 252–266. Springer.

Van Roy, P., Armstrong, J., Flatt, M., and Magnusson, B.
(2003). The role of language paradigms in teaching
programming. In ACM SIGCSE Bulletin, volume 35,
pages 269–270. ACM.

Zurowska, K. and Dingel, J. (2012). Symbolic execution of
uml-rt state machines. In ACM Symposium on Applied
Computing, pages 1292–1299, New York, NY, USA.
ACM.


