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Abstract—The relative ease of test case generation associated
with model-based testing can lead to an increased number of test
cases being identified for any given system; this is problematic as
it is becoming near impossible to run (or even generate) all of the
possible tests in available time frames. Test case prioritization is
a method of ranking the tests in order of importance, or priority
based on criteria specific to a domain or implementation, and
selecting some subset of tests to generate and run. Some ap-
proaches require the generation of all tests, and simply prioritize
the ones to be run, however we propose an approach that prevents
unnecessary generation of tests through the use of symbolic
execution trees to determine which tests provide the most benefit
to coverage of execution. Our approach makes use of fuzzy logic,
specifically fuzzy control systems, to prioritize test cases that
are generated from these execution trees; the prioritization is
based on natural language rules about testing priority. Within
this paper we present our motivation, some background research,
our methodology and implementation, results, and conclusions.

I. INTRODUCTION

When it is not possible to run all tests for a system for any
number of reasons, it becomes necessary to determine which
subset of tests can be run to achieve maximum coverage. This
paper looks at our approach to prioritizing UML-RT test cases
using fuzzy logic. The basis for the work is our previous work
on the incremental generation of UML-RT test cases using
symbolic execution as medium for generating tests[1][2].

A. Motivation

Model-based testing (MBT) makes use of models of sys-
tems (abstractions) as primary artifacts in software testing. In
traditional testing, unit tests are based solely on lines of code,
whereas in MBT they may be based on any number of different
models. This combined with a number of other factors has
made it easier to automatically generate complete and thorough
test suites for a system. The downside is that these test suites
are often very large, and can be redundant in some cases. The
problem here is that not only does it take a significant amount
of time to generate these tests, it also takes a long time to
actually run the full suite tests (in the order of days in some
cases).

B. Contributions

We propose using fuzzy logic to determine a subset of all
tests for a system that will perform a reasonably complete
test of the system, given some set of constraints on testing
(resources, time, etc.). The choice of fuzzy logic for this

task comes from the flexibility it provides, and the ability to
describe rules in a natural language that test engineers can
understand and adjust as necessary. Our choice to continue the
use of symbolic execution as a means of test case generation al-
lows us to obtain information about the nature of the execution
of the systems, as well as insight into the behaviour of each
individual test prior to their actual generation. This advanced
knowledge provides additional savings in computation time.
Thus, our work makes the following contributions:

• a method of selecting a reasonably complete subset
of tests based on natural language rules and informa-
tion available from symbolic execution trees, which
provides improved coverage over random selection

• the ability to use only information available from
symbolic execution in the prioritization process so as
to avoid regeneration of tests that will not be run.

• a tool capable of implementing this selection and
presenting results to testers

II. BACKGROUND AND RELATED WORK

For this work, there are two main areas of related work
that need to be discussed to ensure a basic understanding of the
proposed work. The first area is Model-Based Testing, in which
we present the relevant information from the related MSc
thesis[1][2], and provide necessary background. The second
section presents the relevant aspects of fuzzy logic, and the
basics required for this project. The third section will deal
specifically with comparisons to other methods for test case
prioritization both in general and using fuzzy logic.

A. Model-Based Testing

Model-based testing (MBT) is the process of testing a
system for which the primary artifacts are models of the
system. Recent MBT work has trended towards the automation
of this process, where tests are automatically generated from
a model of the system, whether it is a behavioural model,
a structural model, or some other type of model; the most
common of course being behavioural as these types of models
provide the most information about what the system is intended
to do, therefore the most information about what needs to be
tested.

In previous work[1][2], we studied the evolution of UML-
RT models, and the impact of evolution on test case generation.
Specifically, we looked at how the tests changed given a



Fig. 1: Example Symbolic Execution Tree

catalog of mutations to the source models. The end goal was to
develop a tool which was able to detect the changes to a model
version and update the test suite with minimal computational
effort, such that the new test suite was reflective of the new
model.

We were successfully able to do this using symbolic exe-
cution trees as a medium for test case generation, an extension
of the work of Zurowska and Dingel[3]; by symbolically
executing the model, we were able to obtain an execution
tree, from which we could systematically generate a test suite.
In the case of UML-RT models, a test suite was simply a
series of ordered inputs (as function calls), and the expected
outputs. We were able to reduce the computation time by only
performing symbolic execution when necessary on sub-graphs
of the model, and the results were promising. However the
work left one large area for improvement, in that it still would
generate large test suites, which take long periods of time to
run, and we wanted to come up with a way to identify a strictly
necessary subset, which is where this work picks up.

For the purpose of this prioritization work, we will not
be looking at the incremental test case generation aspect, but
simply the prioritization of tests given information available
from the symbolic execution tree for a model.

For context, in the existing work, once the symbolic
execution tree is obtained, the tests are generated in a depth-
first fashion, with each leaf node of the tree indicating the end
of a test run; therefore the number of leafs is the number of
tests required and the longest path is the largest test case. For
example, the symbolic execution tree seen in Figure 1 would
generate 3 tests, each of length 3 as seen in Figure 2. Given
the results of this work, we can avoid the full generation and
select only the necessary cases for generation and execution.

B. Fuzzy Logic

Fuzzy logic is a form of many-valued logic, meaning that
it is not binary and allows infinitely many degrees of truth

Test Case 1:
default();
protocol.in1(in1var0);
protocol.in1(in1var1);

Test Case 2:
default();
protocol.in1(in1var0);
protocol.in1(in1var2);

Test Case 3:
default();
protocol.in2();
protocol.in2();

Fig. 2: Resulting Test Suite for SET in Figure 1

and falsehood. The concept was first introduced by Zadeh in
1965[4]. This type of logic is very commonly associated with
reasoning using natural language, and compared to computing
with words. For example, the phrase “if you feel hot then take
off your sweater” deals with the complexity of understanding
what is meant by ‘hot’ in this context. Is ‘hot’ an absolute
temperature value? Are there properties associated with it? Or
is it simply meant in a way that is vague, but easily understood
by humans? It is more than likely the last of these, and fuzzy
logic looks at how to use this type of reasoning more formally,
such that it can be computed.

Work in fuzzy logic has become more widespread, and
the notion of a fuzzy logic control system has received a lot
of attention: Lee provides some context on the fuzzy logic
controller[5], and follow up work has been done with genetic
algorithms[6] and neural networks[7]. While not necessarily
required, a control system for test case prioritization could be
applied using the same type of process, in that there are some
number inputs that are used to determine an output (priority).

The accepted process for most fuzzy control systems
involves 4 main steps[8]:

1) fuzzification
2) inference
3) composition
4) defuzzification

Fuzzification is the act of taking some crisp input value
(an observable input) and determining its membership in a
previously defined input fuzzy set (membership values between
0 and 1 for how much the observed value ‘fits’ into a specific
set); for example a temperature of 10 ◦C may be considered
“cool”, but not as cool as 6 ◦C, so they may receive values
of 0.6 and 0.8 respectively in the fuzzy set “cool”. Inference
deals with determining what a set of fuzzy inputs actually
means based on a specified rule (of which there are usually
many); for example “if temperature is cool and you feel cool
then add another layer” tells you what kind of action should
be taken if the input values for the sets ‘temperature’ and
‘you feel’ match those in the rule. During inference a t-norm
and s-norm are chosen for use in calculation of values. T-
norms are used to define fuzzy AND operators, and s-norms are
used to define fuzzy OR operators. Composition is simply the
process of combining the results of all rules for your system in



some manner (there are many different ways presented in the
literature); for example if you have 10 rules, 4 of which say you
should add a layer, three of which say you shouldn’t change
the number of layers, and 3 of which say you should remove
a layer, you can see that the system is suggesting (with not
very strong confidence) to add a layer. Finally, defuzzification
is the process of returning back to a crisp output based on
the composed results, such that your system has an actionable
result. It is not always the case that this is necessary, the fuzzy
result may be more meaningful than the crisp, but there are
many cases where a crisp result is needed; for example in our
case, a specific priority is needed rather than a membership in
a fuzzy set.

C. Related Work

While this is the first work on prioritizing UML-RT test
cases using fuzzy logic, the concept of test case prioritization
in general using fuzzy logic is not a new concept and there
are a number of works on the subject.

Work by Chaudhary et. al.[9] focuses on prioritizing test
cases for GUI based software using fuzzy logic. Focus was
on the inputs (event type, event interaction, and count based
criteria), which fit into five levels (very low, low, medium,
high, and very high), thus producing 125 rules; each rule takes
into account all inputs, much like our own implementation.
However, it is worth noting that this approach only uses
information about what the tests are aimed at testing as part
of the factors for prioritization, whereas our methodology
examines the potential effectiveness of a given test through
coverage of symbolic states.

Similarly Malz et. al.[10] present their work on prioritizing
test cases using software agents and fuzzy logic. With this
work, the focus is on the use of software agents, which
introduces a collaborative element to prioritization, with the
agents working on different priority values, and determining
final priority in cooperation with the other agents.

Alakeel presents work[11] on using fuzzy logic to prioritize
regression testing of programs with assertions, which is another
specific application of fuzzy test case prioritization. The focus
on regression testing provides prior knowledge which is used
in the prioritization, such as whether or not the assertions have
been affected, partially affected, or not affected. However one
downside to this approach is that prioritization focuses on the
rate at which tests violate assertions in programs, which is
taken to show that a programming fault exists, however does
not necessarily take into account testing the desired behaviour
of the system to ensure it acts as expected.

From these examples it is evident there is merit to using
fuzzy logic to prioritize test cases, with each of these works
demonstrating success. However an added benefit of our
approach is the white-box style of prioritization that comes
from the use of symbolic execution and the information it
provides. Namely the ability to measure state coverage of a
system allows for an accurate metric to measure success.

More generally, test case optimization on source code is
another area where researchers have focused. A family of
empirical studies by Elbaum et. al.[12] looks at a number
of different methods for prioritizing test cases, comparing

their methodology with random ordering of tests, as well as
an optimal ordering (since defects are known). They look at
approaches such as statement coverage, and fault detection
probability, as well as combinations of these approaches which
utilize prior testing results to add additional information. One
difference with the type of prioritization presented here and
our work is the prior existence of test cases; our method
of prioritizing tests does not presuppose the existence of
generated tests, and merely relies on the symbolic execution
tree of the system (from which tests can be generated) and a
knowledge of how tests are generated systematically. This adds
the benefit of being able to prioritize which tests are created,
as well as which tests are run.

Another empirical study by Rothermel et. al.[13] looks at
prioritization of tests in a similar manner, comparing to random
ordering and optimal ordering, however they also introduce
unordered as a method of prioritization. In terms of the
methods of prioritization to compare to these three baselines,
the authors propose branch coverage, statement coverage, and
fault exposing potential (FEP). One area where our approach
is more robust is in determining coverage. Since our definition
of coverage stems from symbolic state coverage, we have the
advantage of being able to compare coverage of all possible
execution paths through a system.

A third study of techniques similar to our work was con-
ducted by Di Nardo et. al.[14] in which they look specifically
at coverage based test case prioritization. They focus on four
types of coverage criteria: total coverage, additional coverage,
total coverage of modified code, and additional coverage of
modified code. While the idea of prioritizing based on coverage
is similar, this work still focuses on types of code level
coverage such as statements, function calls, branches, etc..
Their results show that prioritizing tests with high coverage
provides better fault detection, however we propose that the
use of symbolic execution will provide additional information
that is useful for coverage based test case prioritization.

Srikanth et. al.[15] provide another look at test case pri-
oritization, in which they prioritize tests based on require-
ments, specifically the factors of customer assigned priority,
requirements volatility, implementation complexity, and fault
proneness. Prioritization based on requirements reveals less
about the system than approaches such as ours, which utilizes
the available information from symbolic execution to prioritize
tests, much like a white-box method of prioritization.

Perhaps the work most closely related to ours is by Korel et.
al[16] on test prioritization using system models for early fault
detection. This method, using executable finite state machines
(EFSMs) as models, would be equivalent to testing based
solely on the UML-RT state machine models that are part of
our work - leaving out the step of symbolically executing the
system to provide more detailed information. Another major
difference is that this method looks at merely assigning a test to
be either high priority or low priority, then randomly ordering
the high then low priority tests. Our method allows for a
much finer granularity of priority, which is essentially infinite.
Finally, their work requires the added step of generating
or creating the EFSM, whereas the symbolic execution tree
portion of our prioritization is already a necessary step in
test case generation, requiring no additional steps in order to
prioritize the tests.



Collectively, there are a number of works on both test case
prioritization in general, as well as using fuzzy logic, however
our approach proposes advantages over existing techniques,
which involve the use of symbolic execution. Through ob-
taining the symbolic execution tree, we are able to discern
information about the execution of the program to use in the
prioritization of tests, mainly symbolic state coverage, but also
the relative importance of a given test compared to other tests,
the overall complexity of the whole system, and the amount
of interaction with other systems (measured by amount of
output signals generated by a particular test). Add to these
factors the ability to know all of this information about the test
suite without having to have first generated all of the tests (or
regenerated if the case may be), since we leverage the symbolic
execution tree to automatically generate tests and it becomes
evident the contributions our work makes over existing test-
case prioritization work.

As such we have chosen to continue to explore the concept
of test case prioritization using fuzzy logic with our work in
testing UML-RT, specifically highlighting the use of symbolic
execution as the medium for test case generation, in an attempt
to gather as much information about the resulting test suite
prior to its generation and make use of execution information
in the priority assignment decisions.

III. METHODOLOGY

In this section we present the process taken to implement
test case prioritization for UML-RT models. There were three
main areas of work for this project (input/output identification,
rule selection, and presentation of results) which all feed into
the tool implementation at the end of the work. The imple-
mentation subsection will deal with the mapping of our work
to the four steps of the fuzzy control systems presented earlier
in this paper, and how specifically they were implemented.

A. Input & Output Set Identification

The first step in programming any fuzzy control system is
to determine what the inputs and outputs are going to be, and
to present them as fuzzy sets which will be used throughout
the process.

Recall, one of the main goals of this work is to utilize
only information available from the symbolic execution tree,
such that the full test suite need not be generated in order to
prioritize, thus saving a step along the way. As such we took
a look at the information available within the tree itself, as
well as information that can be inferred from the tree given
knowledge of the test generation process. The result was a set
of four inputs which have an impact on how important it is
to run each test case. The output of our system is naturally
a priority level, however we also needed to determine how to
represent this as a fuzzy set.

This step in the work maps to the fuzzification step for
the inputs and the defuzzification step for the output. Each
of the following sections will present one attribute, and how
it was represented as a fuzzy set. It is important to note that
the choices for the mappings of these fuzzy sets are based
largely on the sample data set we have been working with,
however they can be easily scaled and adjusted to suit any set
of models, and fine-tuned to encompass multiple sets.

Fig. 3: Test Suite Size - Fuzzy Input Set

1) Test Suite Size - Input: The first input variable that we
chose to examine was the size of the test suite in terms of the
absolute number of test cases. This was considered to be an
important factor on the priority of a given test for a number of
reasons. First, if the overall size of the test suite is small, then
it is less important to weed out test cases as run-time becomes
less of an issue; each test in a small test suite can have a higher
priority. On the other hand, as the test suite increases in size
there becomes a need to lower the priority of some of the test
cases.

For this input, it was necessary to come up with fuzzy sets
to represent size; as such we developed three fuzzy sets for
test suite size: small, medium and large. These sets are shown
in Figure 3. In this instance a test suite is small if it has up
to 50 test cases, medium from 40 to 600, and large if greater
than 300, each with differing levels of membership.

The crisp inputs for this input are taken directly from the
symbolic execution tree; each leaf node in the tree is a final
state in a path, meaning that the number of leaf nodes is the
number of tests that will be generated from the given tree.
For example the SET in Figure 1 would be of size 3 (as
demonstrated in Figure 2).

2) Symbolic Execution Tree Size - Input: The second aspect
we chose to examine was the overall size of the symbolic
execution tree, which is measured in the total number of sym-
bolic states contained in the tree. The larger the tree (overall,
not just breadth or depth), the more complex the system is,
generally. This particular input allows us to add weight to test
cases which come from a large symbolic execution trees as the
more complex a system is, the more important each individual
test case is.

Just as with the previous input, we chose to have three
fuzzy sets representing symbolic execution tree size: small
(0-700), medium (200-1000), and large (> 700), each with
differing levels of membership. These sets are shown in Figure
4.

The crisp input values for this input are calculated by
counting the total number of symbolic states in the entire
execution tree. While this seems like it would be an expensive
calculation to perform, especially since it is similar in order to
the generation of a full test suite, this is actually done at time
of generation of the SET, and stored as an attribute, requiring
no additional computation to use in the prioritization process.
For example the SET in Figure 1 has a total size of 8.



Fig. 4: Symbolic Execution Tree Size - Fuzzy Input Set

Fig. 5: Relative Test Case Size - Fuzzy Input Set

3) Relative Test Case Size - Input: The previous two inputs
deal specifically with attributes of the entire test suite, which
if taken alone would assign the same priority to every test case
in a test suite, which defeats the purpose of this work; it is
necessary to look at individual tests as well. This is why the
next attribute is the relative size of the individual test cases
compared to the whole test suite. This is an important input,
as it is a good measure of the relative importance of the given
test case; a larger test case will test more of the system and is
therefore more important overall.

Again, just as with the previous two inputs, we were able to
come up with three fuzzy input sets to represent the relative
test case size: small (0-80%), medium (70-90%), and large
(75-100%). These fuzzy sets are shown in Figure 5.

The crisp input values for this input are calculated by
comparing the length of the test case to the longest test case
in the test suite, and representing it as a percentage; therefore
the largest test case receives a crisp input value of 100%,
and one half that size is assigned a value of 50%. This helps
differentiate between tests that are shorter (for example tests
which terminate immediately based on a planned error) and
those that run for a longer period (for example tests which
demonstrate desired performance for a long period). Test case
lengths are also stored as an attribute in the SET leaves during
generation. In our running example from Figure 1, each test
here would receive a priority of 100% since they are all of
length 4, which is the longest test case; this is not always the
case.

4) Output Significance - Input: The fourth and final input
that we used dealt with the importance of a test case based on
its output significance. In a UML-RT state machine, not only

Fig. 6: Output Significance - Fuzzy Input Set

are inputs received from an outside source, output signals may
also be sent to other capsules or state machines, and outputs
can be logged. It was deemed that the more output generated
by a specific test case, the more important it was; thus a test
case with high output significance would have a higher priority,
in general.

Again, this input divided nicely into three fuzzy sets,
although they are slightly different as they don’t necessarily
deal with size, but significance. Therefore the three sets are:
low (0-10%), medium (5-55%), and high (30-100%). These
sets are shown in Figure 6.

The crisp input values for this set are obtained as a
percentage of all of the inputs which have an associated output.
For example if every input transition has an associated output,
then the output significance would have a value of 100%. Just
as with the other input values, this information is calculated
at the time of generation and stored in the leaves of the SET.
Our example SET in Figure 1 does not produce outputs due
to its simplicity, so each of the tests would receive 0% as its
calculated output significance, which provides full membership
in the low class.

5) Test Case Priority - Output: As stated, it was obvious
all along that the output would be a priority for a given test
case, the question then became how to represent this, as well
as the fuzzy sets.

The last item that was necessary was to determine how
to assign values to the fuzzy outputs sets, and this choice was
fairly arbitrary as the output need only be something numerical
than can be ordered. For this, we chose an output value in the
range from 0 to 1 - these will be the defuzzified results of the
process which are used to determine the priority of each test
case.

We decided that there should be four fuzzy sets that deal
with priority: low (0-0.5), medium(0.4-0.6), high (0.45-0.95),
and very high (0.9-1.0). These sets are shown in Figure 7. The
reason for the change to four sets, while all of the inputs have
three, is that there is a need for the “very high” set in order to
assign a significantly higher priority value to specific test cases
which merit a higher priority given only one of the inputs.

B. Rule Selection

Once we had a starting point (fuzzy input sets) and an end
point (fuzzy output set) it was necessary to find a way to get



Fig. 7: Test Case Priority - Fuzzy Output Set

from one to the other, and the first step in this process is the
selection of rules to infer priority, which is a mapping of the
inference step of a fuzzy control system.

Rules for fuzzy control systems are of the form:

if 〈antecedent〉 then 〈consequent〉
where 〈antecedent〉 can be any number of logical statements.
For this implementation, we chose to have every rule consider
all four inputs, and assign a value for the output, specifically,
they are of the form:

if
TestSuiteSize is W and
SETSize is X and
RelativeSize is Y and
Output is Z

then
Priority is A

where W,X,Y,Z are fuzzy input sets and A is a fuzzy output
set.

Our first approach to generating the rules was to use a
systematic approach, listing all possible combinations of the
inputs, which provided 34 = 81 rules to begin with. For
each of the 81 rules we then chose an output value based
on the specific input values based on logical reasoning using
information about the testing process and goals. In an effort
to reduce the redundancy of applying 81 rules, we began to
search for a way to combine some of the rules in an appropriate
manner. This was done by finding the rules where overlap
exists in the output fuzzy set, and the input fuzzy sets differed
by only one or two. For example, two rules which have small
as the input set for the first three inputs, and the fourth inputs
are low for the first and medium for the second, and both
rules assign an output of high priority, can be combined into
a single rule where the low and medium output significance is
identified as low OR medium. This particular example can be
seen as our first rule. Through this process, we were able to
consolidate down to 39 rules, without any loss of information.

The resulting 39 rules can be found in Table I where each of
the input columns map to W,X,Y,Z respectively, and the priority
column represents A. Instances where a value could be one
of two options are represented with a logical or (||), whereas
instances where all three sets are accepted are represented with
“- - -” (and the attribute is simply excluded from the rule during
implementation).

It is important to note that since the rules are designed
in such a way that a value for priority is calculated by each
applicable rule, and not all rules will apply to all tests, there is
no way that two contradictory rules can be applied equally, thus
canceling each other out. However it is possible that two rules
may assign membership in differing priority classes; since
these values are aggregated in later stages of prioritization,
this is not an issue, and the conflicting assignments contribute
to a more granular priority value being assigned, since a test
may have qualities of two (or more) different priorities, but
usually one more than the others.

C. Presentation of Results

The last item of consideration before the actual implemen-
tation was to determine how results were to be presented.
While it is excellent to have a priority for each test case, we had
to determine what this meant to a tester of UML-RT models,
and how best to present the results.

We came up with two methods for selecting the appropriate
tests from the test suite such that it would automatically present
only the tests that need to be generated and run. The first
method was presenting only the tests that were above a certain
priority threshold, meaning only tests that were of a set priority
would be tested. The second selection method was to choose
a certain percentage of the top priority test cases; whereas
the previous method may only provide a small number of test
cases, this method provides a consistent number of test cases,
albeit they may have a lower priority overall.

The values for these are something that can (and should)
be fairly fluid, meaning that the selection tool will prompt the
user for a minimum priority value or a percentage of tests to
select.

Additionally, we felt that it may also be desirable to simply
output all of the tests, and their priorities, sorted from highest
to lowest, to allow the tester the opportunity to select a number
of test cases manually from the list.

Thus for this tool we came up with three display options
presented to the user at the beginning of prioritization:

1) All Test Cases with Priority ≥ Some Threshold
2) The Top Percentage of Test Cases
3) All Test Cases (sorted by descending Priority)

D. Implementation

Just as was the case for the implementation of the test
case generation[2], this project is implemented as a plugin for
IBM’s Rational Software Architect Real-Time Edition (RSA-
RTE)[17], which is an IDE for UML-RT development. The
plugin code is developed in Java, making use of the associated
libraries for UML-RT.

In this section, we present the implementation in terms of
the four steps involved in fuzzy logic control systems.

1) Fuzzification: To perform fuzzification of the input sets,
it is first necessary to observe crisp values for the input de-
scribed in Section III-A. To first do this, the selected UML-RT
Capsule is symbolically executed, and the symbolic execution
tree is stored in memory for analysis.



TABLE I: Fuzzy Rules

Test Suite Size SET Size Relative Size Output Significance Priority
SMALL SMALL SMALL LOW || MEDIUM HIGH
SMALL SMALL SMALL HIGH VERY HIGH
SMALL SMALL MEDIUM || LARGE LOW || MEDIUM HIGH
SMALL SMALL MEDIUM || LARGE HIGH VERY HIGH
SMALL SMALL || LARGE MEDIUM LOW HIGH
SMALL SMALL || LARGE MEDIUM MEDIUM || HIGH VERY HIGH
SMALL MEDIUM SMALL LOW || MEDIUM MEDIUM
SMALL MEDIUM SMALL HIGH HIGH
SMALL MEDIUM MEDIUM LOW || MEDIUM HIGH
SMALL MEDIUM LARGE LOW || MEDIUM HIGH
SMALL LARGE SMALL - - - HIGH
SMALL - - - LARGE - - - VERY HIGH

SMALL || LARGE MEDIUM MEDIUM HIGH VERY HIGH
MEDIUM SMALL MEDIUM LOW LOW
MEDIUM SMALL MEDIUM MEDIUM MEDIUM
MEDIUM SMALL LARGE LOW || MEDIUM MEDIUM
MEDIUM SMALL LARGE HIGH HIGH
MEDIUM MEDIUM SMALL LOW || MEDIUM LOW
MEDIUM MEDIUM SMALL HIGH MEDIUM
MEDIUM MEDIUM MEDIUM LOW || MEDIUM MEDIUM
MEDIUM MEDIUM MEDIUM HIGH HIGH
MEDIUM MEDIUM || LARGE LARGE LOW MEDIUM
MEDIUM MEDIUM || LARGE LARGE MEDIUM || HIGH HIGH
MEDIUM LARGE MEDIUM LOW MEDIUM
MEDIUM LARGE MEDIUM MEDIUM HIGH

MEDIUM || LARGE SMALL SMALL - - - LOW
MEDIUM || LARGE SMALL MEDIUM HIGH HIGH
MEDIUM || LARGE LARGE SMALL LOW || MEDIUM LOW
MEDIUM || LARGE LARGE SMALL HIGH MEDIUM
MEDIUM || LARGE LARGE MEDIUM HIGH VERY HIGH

LARGE SMALL MEDIUM LOW || MEDIUM MEDIUM
LARGE SMALL LARGE LOW HIGH
LARGE SMALL LARGE MEDIUM || HIGH VERY HIGH
LARGE MEDIUM SMALL - - - MEDIUM
LARGE MEDIUM MEDIUM LOW MEDIUM
LARGE MEDIUM MEDIUM MEDIUM HIGH
LARGE MEDIUM || LARGE LARGE LOW || MEDIUM MEDIUM
LARGE MEDIUM || LARGE LARGE HIGH HIGH
LARGE LARGE MEDIUM LOW || MEDIUM HIGH

The crisp values for the two test suite level inputs (Test
Suite Size and Symbolic Execution Tree Size) are then mea-
sured and stored, and for each test case, the two test case level
inputs (Relative Size and Output Significance) are measured
and stored.

With these crisp values, we then obtain the membership in
each of the three associated fuzzy sets for each input, using
specific helper methods hard coded with the values from each
of the graphs in Section III-A. Since the membership functions
are all linear, this is a simple calculation to make. The result
is 12 membership values (4 inputs, 3 sets each) for each test
case.

With these twelve values, the inputs are considered to be
fuzzified.

For example, our SET from Figure 1 would have the
following crisp inputs:

Test Size: 3
SET Size: 8
Rel. Size: [100% 100% 100%]
Output Sig: [0% 0% 0%]

which would lead to the memberships in the fuzzy sets seen
in the following Table (only first test case used as example):

TABLE II: Resulting memberships in fuzzy sets for first test
case resulting from the SET from Figure 1

Attribute Small/Low Medium Large/High
Test Suite Size 0.94 0 0

SET Size 1 0 0
Relative Size 0 0 1

Output Significance 1 0 0

2) Inference: The next step is the inference step, which
involves utilizing the rules presented in Section III-B.

The internal representation of this step is a two-dimensional
array for the result; the first dimension is the four output sets,
and the second dimension is the rule number. Each rule will
assign a membership value to one of the four outputs sets, thus
the resulting two dimensional array will be of size 4-by-39, and
each rule will contain only one non-zero entry.

The values are calculated using the rules from Section
III-B; the t-norm and s-norm used for this work are min



and max respectively. Therefore, the calculation for the first
rule would be as follows (capital letters represent indexing
constants):
result[OUT.HI][0] =

Math.min(membership[IN.TS][TS.SM],
Math.min(membership[IN.SE][SE.SM],
Math.min(membership[IN.RS][RS.SM],
Math.max(membership[IN.OU][OU.LO],

membership[IN.OU][OU.ME]))));

The resulting 4-by-39 two-dimensional array provides us
with inferred membership values for the four output fuzzy sets,
which are then used in later steps.

In our running example, recall that the first test case from
the SET in Figure 1 has membership: SMALL, SMALL,
LARGE, LOW, which is only activated by the third rule -
therefore this test case would be assigned a value for its
membership in the high priority, and following the calculation
style explained above, its membership in high priority would
be calculated as:
min(0.94,1,(max(0,1)),(max(1,0)) = 0.94

giving this test case a membership of 0.94 in the High Priority
fuzzy set.

3) Composition: The composition step deals with deter-
mining values for each of the four fuzzy sets based on the
39 rules. This was done by simply choosing the maximum
value obtained from the rules for each of the four classes,
thus composing the outputs into four values, one for each
of the sets: low, medium, high, and very high. Recall the
internal representation for these values being a 4-by-39 two-
dimensional array, where each column represents the member-
ship in a certain class, this is easily calculated by determining
the maximum value in each column.

In our simple running example, since the membership
values are discrete and do not overlap, only the one rule is
used, therefore there is only non-zero membership in one fuzzy
set, which is the result of 0.94 membership in High Priority.

4) Defuzzification: The final step taken in order to de-
termine the priority of a given test case is to defuzzify the
composed results into a crisp number. To do this, we chose to
use the mean of maximums (MoM) method of defuzzifying.
What this means is that given the four composed values, the
tool simply takes the highest membership value for a set (or
multiple sets if there is a tie), and determines the priority values
associated with those membership values, and takes the mean
of all values on that/those interval(s). The result is a single,
crisp, value between 0 and 1 that represents the priority for
that test case. This process is repeated for every test case, and
the results are presented as described in Section III-C.

For our running example, a membership of 0.94 in high,
and no membership in any of the other sets, is defuzzified to
a crisp value of 0.747.

IV. VALIDATION & RESULTS

In order to validate our tool, we wanted to measure the
tool’s ability to select test cases which provide the best cov-
erage of a system, which is measured by number of symbolic
states within a state machine covered; the more states reached

by a selected test suite, the more of the system that is covered.
As such, symbolic state coverage was our metric of validation.

To test the implementation, we obtained 40 results for each
of five test models. The five test models used are the five
models presented in the appendices of prior work[2], and used
throughout. They are five very different models, differing in
size, complexity, output significance, and test suite size.

The 40 results for each model come from running at
incremental 5% thresholds from 5-100, for both a fuzzy
prioritization, and a random selection of tests, in order to
compare the performance of our tool over random selection.
For the random values however, each test was run 3 times,
and the results were averaged, bringing the total number of
runs on each model to 80. For example, Model 3 produces a
symbolic execution tree with 689 states, by selecting 35% of
all tests, our tool covers 306 states (44.4% coverage), where
random selection of tests covers only 236 states (34.3% cover-
age) showing improved performance. Partial results (selection
thresholds that are multiples of 10) can be seen in Table III
and graphs showing the individual performance of each model
can be seen in Figure 8.

In terms of results, the tool was successfully able to
generate an independent priority for each test case in a test
suite which follows the logic of the fuzzy rules. In the majority
of instances, the tool performed better than random selection
with a few exceptions, where the results were comparable,
showing that our method of fuzzy prioritization will generally
show improved coverage for the same amount of testing. It
is worth noting that in all of these examples, the resulting
symbolic execution trees are fairly balanced, meaning that
most of the tests are of the same or similar length with little
variance. Because of this fact, there is minimal opportunity for
improvement over random selection in terms of state coverage,
and the results presented here show a substantial gain given the
circumstances. However, in real-world examples, the execution
trees will likely be less balanced (closest example of this is
Model 3), and the gain over random selection will be much
greater.

V. FUTURE WORK

There are several areas where this work could be improved
in future work, the most obvious being the fine tuning of the
fuzzy rules. While changes were made during development,
it is certainly possible to refine this set of rules even more.
This type of fine tuning can include adjusting the membership
in fuzzy sets as well, which may yield drastic changes in the
results.

Another area that could provide some further improvement,
and would warrant future work is the choice of other t-
norms and s-norms other than min and max; this change
may have a significant impact on the resulting test suites -
a comparison with other common t-norms and s-norms would
be interesting. Our suggestion for this expanded list would be
the list presented in the work Gupta and Qi[18].

Another area where further work could be conducted would
be a study of the performance gain, in terms of computa-
tion time, of this type of prioritization. While our work is
successfully able to identify a set of models that should be
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Fig. 8: Performance results of individual models - fuzzy prioritization (dark/square) vs. random selection (light/triangle)



TABLE III: Fuzzy Prioritization vs. Random Selection (number of symbolic states covered by selected tests)

Model 1 Model 2 Model 3 Model 4 Model 5
% Tests Fuzzy Random Fuzzy Random Fuzzy Random Fuzzy Random Fuzzy Random

10% 1435 1244 0 0 108 79 38 40 18 13
20% 2837 2493 2 2 213 139 72 76 30 22
30% 4140 3753 2 2 330 195 115 115 46 44
40% 5436 4996 6 4 426 294 158 154 58 49
50% 6757 6315 6 6 470 354 202 195 72 63
60% 8157 7533 6 3 513 422 244 237 83 86
70% 9530 8808 8 8 557 456 280 274 95 97
80% 10623 10084 8 8 601 524 324 313 109 109
90% 11611 11329 9 9 645 619 366 359 121 123

100% 12576 12576 9 9 689 689 403 403 137 137

tested based on the supplied fuzzy rules, as well as showing
an improvement in coverage over random selection in most
cases, it is unknown if the chosen models would reduce the
amount of time required for testing. Another interesting metric
to look at would be bug detection ability of selected tests.

VI. CONCLUSIONS

In this paper, we present our work on prioritizing UML-RT
test cases using fuzzy logic. The approach follows the pattern
of fuzzy logic control systems, making use of four inputs (test
suite size, symbolic execution tree size, relative test case size,
and output significance) to produce a single output (priority)
for each test case in a UML-RT Test Suite. The system makes
use of 39 fuzzy rules to infer priority (using min and max
as the t-norm and s-norms respectively), and composes these
rules by taking the maximum membership for each class. The
result is defuzzified using the mean of maximums method to
obtain the single crisp output for priority.

The tool implements the above methodology as a plugin
to IBM RSA-RTE, an IDE for developing UML-RT Models.
The results of running the tool on five example models show
an improvement over random selection, in terms of symbolic
state coverage, in almost every instance. Thus, the use of
fuzzy logic, using only information available from symbolic
execution, can help improve the symbolic state coverage of a
system when only a subset of tests can be run.
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