
Can everyone use my app? An Empirical Study on
Accessibility in Android Apps

Christopher Vendome
Miami University

Oxford, OH
vendomcg@miamioh.edu

Diana Solano
Universidad de los Andes

Bogotá, Colombia
dc.solano10@uniandes.edu.co

Santiago Linán
Universidad de los Andes

Bogotá, Colombia
s.linan10@uniandes.edu.co

Mario Linares-Vásquez
Universidad de los Andes

Bogotá, Colombia
m.linaresv@uniandes.edu.co

Abstract—Universal design principles aim to improve accessi-
bility by ensuring product designs consider all users, including
those with certain disabilities (e.g., visual impairments). In the
case of mobile apps, accessibility is mostly provided by existing
features in mobile devices, like TalkBack on Android that reads
information to users. However, it is not clear to what extent de-
velopers actually implement universal design principles or utilize
these technologies to support accessibility of their applications. By
performing a mining-based pilot study, we observed developers
seldom use Accessibility APIs and there is a limited usage of
assistive descriptions. Then, we focused on understanding the
perspective of developers through an investigation of posts from
StackOverflow. We identified the aspects of accessibility that
developers implemented as well as experienced difficulty (or
lack of understanding). We performed a formal open-coding of
366 discussions threads with multi-author agreement to create
a taxonomy regarding the aspects discussed by developers with
respect to accessibility in Android. From the qualitative analysis,
we distilled lessons to guide further research and actions in aiding
developers with supporting users that require assistive features.

Index Terms—Empirical Studies, Mobile Accessibility, Univer-
sal Design

I. INTRODUCTION

Universal Design broadly focuses on ensuring the accessibil-
ity of products, services, buildings, places, etc. Its foundations
are in a set of seven principles: equitable use, flexible in use,
simple and intuitive use, perceptible information, tolerance of
error, low physical effort, size and space for approach and use
[1], [2]. These principles aim to avoid disenfranchising any
individual, despite the potential of having a disability (e.g.,
color blindness). To emphasize the importance of accessibility,
governments have certain laws related to accessibility, such the
(i) Americans with Disability Act (ADA) [3] and (ii) Section
508 of the U.S. rehabilitation act [4]. The latter law specifically
requires information and communication technology of federal
agencies to meet certain standards.

According to the “World Report on Disability” (2011) of
the World Health Organization (WHO) [5], “About 15% of
the world’s population lives with some form of disability [...].”
The disability statistics portal maintained by Cornell University
reports that “12.9 percent of females of all ages and 12.7 percent
of males of all ages in the US reported a disability” [6]. So,
it raises a question regarding whether mobile developers are
considering accessibility aspects in their apps.

In mobile app development, there is a large body of work con-
sidering energy consumption [7]–[11], performance [12]–[15],

security/malware detection [16], and automated testing [17]–
[20]. However, there is very limited work related to accessibility
in Android apps. It is not clear to what extent developers
implement universal design principles or utilize accessibility
features in their apps. Additionally, there are few works aimed
at investigating the challenges that developers face with respect
to accessibility (e.g., using some accessibility API or using
existing support like TalkBack).

In this paper, we investigate the accessibility aspects dis-
cussed by developers and to what extent certain accessibility
features are implemented in Android apps. With this knowledge,
the research community can create tools to better support
mobile developers with accessibility as well as encourage
more developers to consider universal design with automated
support. To this goal, we first conducted a preliminary mining-
based study on Android apps hosted on GitHub to investigate
the extent to which open source developers use accessibility
APIs and use assistive content descriptions (utilized by screen
reading tools). We analyzed 13K+ Android apps and found
the vast majority (over 97%) do not use any accessibility
APIs. Additionally, only approximately half of the apps have
content descriptions for all of their elements. The lack of
accessibility APIs suggests a potential lack of consideration
or knowledge related to accessibility, and the lack of assistive
content descriptions limits the effectiveness of existing support
features providing screen reading for visually impaired users.

After the preliminary study, we mined StackOverflow,
identifying 810 discussions related to universal design and
accessibility; then, we performed a formal open-coding on a
statistically significant sample of 366 discussions. From this
coding, we present a taxonomy of 58 categories related to
aspects discussed by developers. Surprisingly, about 36% of
the sample of analyzed questions relates to questions about
using accessibility APIs for purposes not related to accessibility.
However, support for visually impaired users is the most
discussed aspect with about 43% of the sample.

To the best of our knowledge, this work is the first to
investigate accessibility from the perspective of features imple-
mented in Android open source apps and aspects discussed by
Android developers. The limited usage of accessibility APIs
demonstrates a great potential to aid developers with enhancing
the accessibility of their apps. Additionally, the taxonomy
demonstrates areas that developers would benefit from support



when trying to implement universal design principles.

II. ACCESSIBILITY IN MOBILE APPS

Universal Design (UD) is a concept created by the architect
and designer Ronald L. Mace in the decade of 1980. In
its origins, it was related to architecture, housing and urban
development; nevertheless, it evolved to the idea of designing
aesthetic and usable products, regardless the condition or
abilities of its users. [21]. The underlying idea of “design
for all’ or “design for everyone” was later translated by The
Center for Universal Design into 7 principles [1], [2]:

• “Equitable use: the design is useful and marketable to
people with diverse abilities;

• Flexibility in use: the design accommodates a wide range
of individual preferences and abilities;

• Simple and intuitive use: use of the design is easy to
understand, regardless of the user’s experience, knowledge,
language skills, or current concentration level;

• Perceptible information: the design communicates nec-
essary information effectively to the user, regardless of
ambient conditions or the user’s sensory abilities.

• Tolerance for error: the design minimizes hazards and
the adverse consequences of accidental or unintended
actions;

• Low physical effort: the design can be used efficiently
and comfortably and with a minimum of fatigue;

• Size and space for approach and use: appropriate size
and space is provided for approach, reach, manipulation,
and use regardless of user’s body size, posture, or
mobility.”

These principles became the basis of some of the guidelines
established for web and mobile software design with the
purpose of developing accessible apps. Accessibility is a non-
functional attribute in software defined as “The quality of
being easily reached, entered, or used by people who have a
disability" [2]. This concept can be described as the overlap
between a person’s functional capacity and the design of a
physical environment [2]. Interactions between people and
these environments result in norms and standards that serve
as drivers and guidelines for designing services and products
for different populations such as kids, people with disabilities,
older adults, among others.

Having accessibility in mind, mobile apps have intrinsic
challenges to overcome, because they work on small touch
devices in a large variety of platforms and versions of operating
systems; For example, touch screens do not provide mechanical
feedback like physical keyboards would. Consequently, built-in
software feedback, tailored input methods, and screen reading
capabilities are necessary to enable equitable use, flexibility in
use and perceptible information for the impaired population.

Mobile devices include some accessibility features, including
screen reading capabilities as in the case of TalkBack for
Android and VoiceOver for iOS. TalkBack gives spoken
feedback and notifications to users; it is completely integrated
with Android since version 3.2, and includes a series of
features whose objective is to improve accessibility throughout

the operating system and the applications that comply with
the Android’s specification. A main feature of TalkBack is
Explore By Touch in which users can interact with the screen
dragging their fingers and double-tapping, while TalkBack
announces headers, labels, icons and other assistive content
defined by developers [22]. In addition to TalkBack, Android
provides many others features to improve accessibility to a
broader set of users (e.g., hear impaired, speech impaired) such
as changing display and font size, increasing contrast, screen
magnification, captions in video, among others.

Even though platforms include accessibility services/features
to support universal design principles, developers must comply
with certain practices in their applications (e.g., set content
description to the images, design TextViews and labels to work
with different font sizes). However, as of today, few works
have been devoted to identify in large-scale studies whether
developers are following those practices.

A. Guidelines

The UD Principles have been translated into guidelines
specifically focused on mobile applications. For example,
Hellman proposed a list of categories which include: navigation
and workflow, errors management, search and queries, time, text
and language, voice and sound, graphics, figures and numbers
and help information [23]. More specific guidelines have been
proposed, regarding this by Wentzel et al. [24], who defined
specific principles for devices that should work unobtrusively
and hands-free (i.e., wearables). In addition, other studies have
focused on creating guidelines for specific populations such as
Ruzic et al. [25] and Markus et al. [26] that designed guidelines
for the aging population.

In order to evaluate if UD principles are being incorporated
into mobile devices, Tomberg et al. [27] manually reviewed
existing lists of accessibility evaluation criteria focused in web,
human computer interaction, mobile, and wearables. Tomberg et
al. made a compendium of the most important guidelines (e.g.,
BBC Mobile Accessibility Guidelines [28], W3C Accessibility
Guidelines [29]). Other approximations to evaluate the UD
principles attempt to quantify the accessibility of a design, e.g.,
Kim et al. [30] proposed an index to evaluate mobile phones
hardware, based mainly in ergonomics.

Other guidelines have been proposed but for accessibility
testing. Eler et al. proposed an approach to generate automated
tests for accessibility [31]. In particular, they consider: (i)
speakable text, (ii) touch size area, (iii) contrast ratio, (iv)
duplicate clickable bounds, and (v) clickable span.

B. Previous Empirical Studies

Other research efforts have focused on empirical studies
focused on different accessibility aspects. Kocieliński et al.
investigated the existing accessibility features with virtual
QWERTY keyboards on mobile phones and compared it against
using an integrated Braille notetaker (existing tool for visually
impaired) [32]. The results demonstrated that integration of
the Braille notetaker greatly increased the time to complete
tasks and they claim existing support is not sufficient to assist



the visually impaired. Zhong et al. proposed augmenting the
touch feature on Android phones to facilitate less precision to
a targeted location and assisting with gestures that may not be
suitable for individuals with tremors (e.g., double-tapping the
same location) [33].

Other examples are Mehta et al., who conducted a study
with 12 blind users to investigate the accessibility of date-
pickers and to understand how date-pickers could be improved
to support blind users [34]; and, the study by Xie et al., which
focused on providing support for GUIs responsiveness when
connecting smartphones to external displays [35].

Researchers have also explored apps’ accessibility in various
contexts. Coelho et al. manually evaluated 4 government mobile
applications using W3C Accessibility Guidelines [29]. They
conclude that accessibility problems are extensive in these
cases [36]. Walker et al. evaluated weather apps by conducting
a survey with blind and sighted smartphone users; the study
shows that, in general, the apps were not developed to be
universally accessible [37]. Al-Subaihin et al. discovered that
the functionality of TalkBack and VoiceOver with mobile
web apps could be as good as with native applications if
structural HTML elements are correctly used [38]. Krainz et
al. propose to improve accessibility in mobile platforms by
changing the app development process; their main clonclusion
is that a model-driven approach with automated code generation
could avoid accessibility problems [39].

Accessibility for users with special needs has been also
studied in mobile apps. Araújo et al. provided a manual test to
evaluate mobile audio games; this test was developed in order
to check that audio games meet the need of visual impaired
users [40]. In the case of older adults, Díaz-Bossini et al. [41],
[42] have assessed mobile accessibility and proposed guidelines
based on studies with older users about their perceptions of
mobile applications and their specific requirements.

The aforementioned studies have been conducted in a small
scale, targeting a specific population of apps and users, and
mostly from the users’ perspective. Note that none of the
studies has focused on developers and apps at a large scale.

C. Tools for Assessing Accessibility

There are three major official tools for Android: Accessibility
Scanner [43], Lint [44], and Node Tree Debugging [45].

Accessibility Scanner (AS) is an Android tool that runs on
devices and scans the current snapshot of any app with the
purpose of giving suggestions for improving its accessibility.
It is based on dynamic analysis, and requires the app under
analysis to be installed on a device and be in foreground. AS
scans the app and shows accessibility recommendations for
each component in the GUI (if any). The suggestions given
by the AS are mostly related to increasing the size of the
components or improving the contrast ratio of the colors used
for the background and fonts.

Lint is an static code analyzer that runs as part of the SDK
but also integrated with the Android Studio IDE. It reports
micro-optimization opportunities, potential code errors, and
other issues related to different quality attributes. In terms of

Accessibility, Lint detects the following issues: missing content
descriptions and missing accessibility labels declared directly
in XML layout files. One drawback with Lint is that it requires
to have access to the source code and the app should use gradle
as the build automation tool.

Node Tree Debugging is more a tool for testing Android apps.
This tool is able to describe how an AccessibilityService in the
app interprets the app’s UI elements. In order to use Node Tree
Debugging, it is necessary to enable an AccessibilityService
like Talkback; then, from the manual interaction with an
app, the Node Tree is printed in the Logcat. By using the Node
Tree Debugging tool, developers can identify the focusable
elements and their assistive descriptions.

Finally, there are also unofficial tools like the “Enhanced
UI Automator Viewer” described in Patil et al. [46], which
extends UI Automator to capture snapshots of an app under
analysis and “audit” the snapshots looking for accessibility
issues. Specifically, the tool detects unlabeled UI elements
and color contrast. However, analyzing an app with the tool
requires it to be installed in a virtual or physical device.

III. MOTIVATIONAL MINING STUDY

While the main focus and contribution of this paper is a
qualitative study on the developer perspective on accessibility
(e.g., their difficulty supporting accessibility, the features
that they are implementing, etc.), we first performed a pilot
study to understand whether developers were using certain
assistive features, namely Accessibility APIs and assistive
content descriptions for GUI components. It is important to
note that this motivational study aims to provide an initial
empirical insight towards developers supporting accessibility by
analyzing the source code of apps using light-weight methods;
however, a more comprehensive evolutionary study would be
needed to truly understand the extent to which developers are
implementing accessibility support in Android apps.

For this motivational study, we randomly selected 13,817
Android apps from GitHub that had at least one follower,
star, or fork to avoid abandoned projects, and we ensure
the project itself was not a fork to avoid duplicates in
our dataset. The projects were automatically identified by
the presence of an AndroidManifest file and we removed
apps without at least one Android activity. The revision
history of these apps ranged from a single commit to 66k+
commits. To automate our analysis, we built a lightweight
tool to statically analyze the repositories of these apps to
identify (i) accessibility APIs used in the apps source code,
and (ii) presence/lack of assistive content descriptions in
the GUI components. For the accessibility APIs, our tool
detected whether the android.accessibilityservice
and android.view.accessibility packages are im-
ported in the app’s source code. Note that we did not rely on
the existing Android tools because (i) they are not tailored for
the case of automated large scale analysis (e.g., Accesibility
Scanner and Node Tree Debugging), and (ii) in the specific
case of Lint, it requires projects with gradle scripts.



For the assistive content descriptions, the tool analyzed
(statically) the layout files to identify the UI components
and then checks if the components have a non-empty
contentDescription attribute (for ImageView and
ImageButton components) or a non-empty hint attribute
(for EditText components) in the XML file. Additionally,
the tool analyzed the source code to identify invocations to
setContentDescription() and setHint() methods
to identify dynamic labeling of elements, because assistive
content can be also set programmatically. It is important to
note that this content description attribute is utilized by screen
readers like TalkBack (integrated in Android by Google)
to provide support for visually impaired users; screen readers
in the mobile operating systems work by reading the text
associated with elements on the screen as a user navigates the
screen by touch – typically referred to as Explore by Touch –
so that a user can gain an understanding of the screen.

In terms of the accessibility APIs usage, we observe that
only 288 (2.08%) out of 13,817 Android apps import at
least one accessibility API. Looking into the accessibility
APIs, we observe that 252 apps imported a single acces-
sibility API, 14 apps imported two accessibility APIs, and
22 apps imported 3 accessibility APIs; in total, the APIs
were imported 346 times. The most prevalent APIs were
android.view.accessibility.AccessibilityEvent (286 imports), an-
droid.accessibilityservice.AccessibilityServiceInfo (33 imports),
and android.accessibilityservice.AccessibilityService (24 im-
ports). The remaining three import sentences were for entire
packages (imported using the ‘*’ wildcard). It is worth
noting that Android accessibility APIs can be used also
with non-accessibility purposes such as creating key-loggers
or notifications interceptors. However, our purpose with the
motivational study was not to identify the specific usages of
the Accessibility APIs.

We observed that 6,920 Android apps (50.08%) have assistive
content for all their GUI components. Conversely, we observe
that 6,390 apps (46.25%) have at least half of the elements
with empty content descriptions (of these 6,390 Android apps,
5,107 of them had all of the content descriptions empty). Thus,
approximately half of the Android apps do completely include
assistive content that can be used by screen readers. Note that
we were not interested on assessing the quality of the assistive
content; also we used a lightweight tool because we were
interesting on having a preliminary overview of the prevalence
of accessibility APIs and assistive content in Android apps.

Summary: The motivational study found that approximately
half of the projects provided assistive content descriptions,
but seldom utilized APIs for accessibility. This observation
suggests that there is a consideration for providing accessibility
support at least in terms of including assistive content for GUI
components. However, the developers tend rely on mechanisms
that facilitate this support as opposed to implementing the
features through APIs, but there were still a substantial
proportion of apps that did not implement assistive contents at
all. Future work should be devoted to identify specific usages
of the accessibility APIs and reasons for the lack of a more

prevalent implementation of accessibility features in Android
open source apps.

IV. EMPIRICAL STUDY

The goal of this study is to identify the accessibility practices
followed by developers in Android apps, and in particular the
ones oriented to allow app usage by users with disabilities. We
follow a mining-based study in which we analyzed developers’
discussions at Stack Overflow. The perspective we followed
is the one of researchers interested in promoting (i) universal
design practices in mobile apps, and (ii) envisioning automated
tools for implementing accessibility features in Android apps.
In particular, we investigated the following research question:

RQ1: What accessibility aspects are discussed by developers
in Stack Overflow?

With this RQ, we aim to understand the types of accessibility
features that developers are implementing and the issues that
they face with respect to accessibility. In order to better support
developers with accessibility, we believe it is important to
understand the difficulties that they encounter.

A. Data Collection

We identified posts from StackOverflow related to acces-
sibility features and concepts. First, we collected candidate
discussions by mining questions and answers with the following
keywords: accessibilit, blind, braille, brailleback, deaf, deaf
people, design for everybody, disabilit, hearing loss, impair,
medical, on-screen text, real-time text, screen reader, select to
speak, switch access, talkback, tremor, universal design, vision
impairment, visually impaired, voice access, voice over. Note
that we performed a substrings matching such that keywords
like disabilit could match with disability or disabilities.

The list of keywords was selected from universal design
and accessibility guidelines for mobile apps, having in mind
accessibility features (e.g., TalkBack) and user disabilities
(e.g., hearing loss). In addition, we focused only on Android-
related posts, i.e., we queried questions and answers from
StackOverflow (SO) with any tag including the term android.

To collect the SO posts (i.e., questions and answers),
we used the stack exchange data explorer tool (https://data.
stackexchange.com/stackoverflow/query/new), and we limited
the query to retrieve posts with creation time no further than
November 2018. At the end, we collected a set of 1,442
discussions. Note that a discussion includes a question and the
list of answers provided for that given question. It is important
to note also that each of the authors has experience in mobile
app development and knowledgeable of accessibility features.

Some of the keywords used in the query are prone to false
positives (e.g., the term accessibility is also used when referring
to connectivity like network accessibility) and code entities
accessibility (i.e., public, private, etc.). Therefore, one of the
authors went through the 1,442 discussions and discarded the
ones not related to accessibility features/concepts in Android.
After filtering the false positives, the number of discussions
was reduced to 810.

Finally, we manually categorized a statistically significant
sample (with 99% of confidence and margin error of 5%) of

https://data.stackexchange.com/stackoverflow/query/new
https://data.stackexchange.com/stackoverflow/query/new


the filtered discussions by following an open-coding inspired
process, composed of 366 discussions. The sample was selected
randomly from the 810 filtered discussions. Afterwards, the
366 discussions in the sample were distributed among the four
authors in such a way that each discussion was analyzed by
two “coders”. Before starting the analysis, each coder was
instructed to read and assign multiple "codes/tags" to each of
the assigned discussions with the purpose of identifying (i)
universal design-related aspects mentioned in the discussion, (ii)
issues experienced by practitioners, (iii) how the practitioners
are using the Android accessibility APIs (or other related
APIs), and (iv) accessibility-related features implemented by
practitioners.

Note that it was a multi-tagging process, which means that
four free-form tags were assigned to a discussion (one for each
of the aforementioned aspects). Also, the tags False Positive
and Unclear were available in case the coder considered the
discussion as a false positive or she/he was not able to find
an appropriate tag for the artifact, respectively. The tagging
was assisted by an online tool in which every time a new
tag was added to the list, it was available to the four coders.
The tagging was done in iterations to allow clarification and
merging of tags. A first iteration was done with 50 Stack
Overflow discussions (each coder), a second one with 60, and
a last one with 73 artifacts. In total, each coder assigned tags
to a total of 183 discussions. After each iteration, the authors
discussed regarding the generated tags looking for merging
and expressiveness improvement opportunities.

After the three open-coding iterations, we obtained 56
(15.30%) discussions without conflict (i.e., the four tags
assigned by the coders analyzing the discussions were the
same); in 89 posts (24.32%), there were conflicts in three tags;
in 114 cases (31.15%), there were conflicts in two tags; in 79
cases (21.58%), there was conflict only in one tag; and in 28
cases (7.56%), the coders completely disagree (i.e., no tags
in common). To solve the conflicts in the 311 posts with at
least one tag disagreement, given a post P , a third author (not
previously involved in the coding of P ) was assigned to solve
the conflict, i.e., the third coder decided the four tags while
having access to the tags provided by the other two coders.
Note that the names of the original coders were anonymized.

B. Analysis Method

To answer RQ1, we built a taxonomy of accessibility aspects
discussed by developers in Stack Overflow. The taxonomy was
built by the four authors based on the coding process, and
through an open discussion with the purpose of organizing
accessibility aspects in a hierarchy. Iteratively, the codes/tags
were organized in higher concepts until all the codes were
exhausted. The taxonomy is the set of concepts organized in a
hierarchical way.

V. RESULTS: WHAT ACCESSIBILITY ASPECTS ARE
DISCUSSED BY DEVELOPERS IN STACK OVERFLOW?

As a result of the open coding process, we obtained a total of
149 tags, and 30 discussions in which there was no agreement

regarding whether they are related/relevant to accessibility.
Thus, the taxonomy was built with 336 discussions (after
removing the aforementioned 30 issues) that are organized into
58 categories. Figure 1 depicts the taxonomy and its categories.
In the following, we describe the 6 top-level categories and
their sub-categories; because of space limitations, we include
qualitative examples only for some of the sub-categories. When
referring to categories and subcategories in the taxonomy, we
will use italic font (e.g., accessibility warnings).

A. Support for visually impaired people (159 discussions)
This is the top-1 discussed aspect, in particular because

of questions (114) related to sound-based feedback features
that describe what is displayed in the app’s GUI to the user.
Android supports visually impaired users with the TalkBack
feature for screen reading, and via custom features for using
sounds and vibration as a response to touch-based exploration;
those custom features can be implemented by developers with
the Accessibility APIs .

Screen reading is implemented in Android apps by specify-
ing, in layout files or via Accessibility APIs, the assistive
content that is going to be spoken to the user when she explores
the GUI using touch events while TalkBack is active. Based
on our analysis, we found that Android developers look for help
in StackOverflow with understanding how to use TalkBack
and how to customize the assistive content to be reproduced.
For example, the SO question 25244457 asks about setting
up TalkBack for reading the time-of-day:

“Somethings I am struggling with: Times are spoken
as "seven point one five pm" for 7.15pm; "pm" is ok
but "am" comes out as the word "am" as in "I am";
dash is spoken as minus when used to separate words.
How can I fix this?"

There are other examples of questions related to custom con-
tent/action/gestures. While SO question 53547488 describes
the need for customizing the way abbreviations and initialisms
are pronounced, SO question 17181511 asks about how
numbers should be pronounced by a screen reader. In the same
line of thought, SO question 39455917 discusses changing
the defaults instructions provided by TalkBack:

“I use the content description to set the message
Talkback speaks when the view gets focus. Currently it
says my content description right after getting a focus,
and after a short pause says: ‘Double tap to activate,
double tap and hold for long press’. I want to change
this message into something like Double tap to ‘action
1’, double tap and hold for ‘action 2’. Is there a way
to do so?"

We also found questions discussing the quality of screen
reading services in Android. The SO question 14080636
discuss the quality of TalkBack as compared to VoiceOver
in iOS. SO question 15181652 describes that TalkBack
is disabling custom gestures, and SO question 25867034 re-
ports that the Text-To-Speech API generates Application-
Not-Responding errors when using long texts. Concerning non-
functional aspects, in SO question 24462690, the developer



Accessibility 
in mobile 
web apps

Accessibility 
testing

Support for 
visually 

impaired

Support for 
motor skills 

impaired

Internationalization/
Translation

Screen 
reading

Color 
transformations

Keyboard 
alternatives 

Braile 
support 

IDEs for blind 
programmers

Other 
accessibility 

aspects

Distribution 
policies

Keyboard 
alternatives

Formatting/
Style

Test 
automation

Tests in 
emulators

Focus 
formatting

Scanner 
usage

Screen 
reading

Cross-app 
translation

Gestures 
limitations 

No-specific 
disability

Touch screen 
alternatives 

Language 
transformations

Speech to 
text

Readability

Voice 
translation 
to action 

Sound-
based 

feedback

Sounds/
Vibration

Actions 
automation/
recognition

Custom 
touch 
events

Emergency 
actions

Custom 
keyboard 

OCR

Context 
awareness

Accessibility 
warnings

Third-party 
frameworks

Mobile web 
apps

Font size-
related

Custom content/ 
actions/gestures

Voice 
translation 
to action 

Not related to 
accessibility 

aspects

Resources 
consumption

Government  
act 

compliance

API usageServices issues

Screen
magnification

Color 
inversionLegal issues

Assistive 
gestures

Screen 
reading

Hearing 
impairment

API issue/
dependency 

bug

Style-based 
feedback

Text to 
speech

159

137

17

1

19

3

2 15 6 2

6

124

General

1114

1251

11

11 2 32 85 1 1 2

Non-
functional 
aspects

Apps for left 
handed 
people

1

Fig. 1. Taxonomy of accessibility-related aspects discussed by Android developers in Stack Overflow

is concerned about the performance impact of setting long
assistive texts.

Screen reading-related issues are also experienced by devel-
opers, when using third party frameworks for hybrid or mobile
web apps. For example, SO question 35230632 illustrates
that TalkBack requires customization for screen reading
specific HTML tags.

There are other features discussed by developers,
for sound-based feedback that are not supported di-
rectly by the Accessibility APIs. For instance,
SO question 7384101 is an example of context awareness
for blind users; the developer is looking for help when
implementing an app that requires detecting the presence of a
bar code (using camera) and then notify the user via vibration
or synthesized voice.

The analyzed posts also show that some developers are
lacking knowledge on accessibility warnings generated by
Android when assistive contents are not specified, as in the
case of SO questions 9363171, 47107105, 8500544.
In those questions, the developers request for help to disable the
warnings and look for explanations of the warnings purpose.

Another accessibility aspect of interest for practitioners
developing apps for visually impaired users is readability
(24 discussions). This aspect includes discussions related to
ensuring that the text is readable via responsive fonts when
(i) the large text feature is enabled in devices, (ii) the app is
installed on different device sizes, and (iii) enabling screen
magnification.

A representative example of font size-related discussions
is SO question 16383638 in which the developer describes
that despite having support for different screen sizes (small,
normal, large, extra large), the layout exceeds the screen
size when an app user selects the “large text” accessibility

setting. Another similar example is SO question 19817086
in which the developer asks for “a way to fix text sizes
independent from device’s settings”. This issue is also ex-
hibited in the case of mobile web apps as illustrated in
SO questions 24911220, 18274504, 42955105.

Concerning screen magnification, developers look for advice
about enabling screen zoom in mobile web and native apps for
accessibility purposes. In the SO question 16815416, the
developer asks for advice with his native app:

“I would like to create an Android Accessibility
Application/Service. This Accessibility app would be
able to magnify any screen image produced by any
application resident on the android device”

In addition, in SO question 18274504, the asker requests
about enabling zooming in a mobile web app:

“That’s right, I want to enable zooming rather than
disabling it. I have created a responsive website and all
is looking good. However for some reason you can’t
pinch-zoom in Chrome on a Nexus 7 (running Android
4.2.2).”

Conversely, developers also look for help in StackOverflow
to solve issues introduced in their apps when screen magnifi-
cation is enabled or when screen resolution is reduced (e.g.,
SO questions 16383638, 43698579).

In the top-3 position of aspects related to visual impairments,
with 6 questions each, we found color transformations for color-
blind users, and keyboard alternatives to the default Android
keyboard. Color-blind users are unable to distinguish certain
colors, and in our sample of StackOverflow discussions, we
found developers asking for help in terms of color transfor-
mations that should be used in mobile apps for color-blind



users. For instance, the author of SO question 24595021 is
developing a game for color-blind users:

“Ideally, I would like a method that just takes any color,
and converts it to the color a color blind person would
need to see to perceive the original color”

The discussion in SO question 11461336 illustrates that
for color-blind users, information in GUIs should be transmitted
in different ways:

“The problem is you need to transmit information by
using color but the screen (or color-blind people’s eyes)
remove some information from the color so the users
will be confused. The solution is to make sure the
information transmitted by color is not affected by the
screens or eyes, and you can also use other media
rather than color.”

There are also some recommendations regarding color
palettes and other options (SO question 11461336):
1) “Color-blindness or grey-scale screen doesn’t remove

all information in the color. For example, if color is
described as HSL (Hue/Saturation/Light), grey-scale
screen removes Hue and Saturation but keeps Light.
If you use 5 different colors, as long as they have
5 distinctive Light values (e.g. 0.1, 0.3, 0.5, 0.7, 0.9)
users won’t have a problem recognize them in grey-scale
screen.”

2) “You can also use other media to transmit the infor-
mation transmitted by color. For example, Adium for
Mac uses both shape and color to indicate contact
status. Online user is green rectangle, away is yellow
triangle, and busy is red circle. This is color-blindness
friendly because users can understand contact status by
identifying the shape anyway.”

Visually impaired users can also be assisted by alter-
natives to the default keyboard displayed in the screen
of Android apps. One example of these alternatives is
the braille keyboard, which is the discussion topic in
SO questions 35165206,43734431:

“I’m working on a project for blind people, there’re
a lot of troubles I need to fix if the user activates
TalkBack on his phone. I’m creating a soft keyboard
for blind people, the blind will tap with single finger
on the circles "Braille Cell Dots" to generate a Braille
code, then he types the character/number/symbols he
wants as they presented in Braille language.”

Other alternatives, different than braille keyboards, are
external keyboards and custom on-display keyboards (e.g.,
SO questions 4910035,9880049,26345497).

The last set of aspects that we found that are related to visual
impairment is the automation of actions (5), and IDEs for blind
programmers (2). The former category includes questions about
customizing touch events, automating emergency calls, and
triggering actions in the device via voice commands. The
latter category includes questions about lack of accessibil-
ity in the Android emulator for a blind programmer (e.g.,
SO question 3382130), and customization of color palettes

in Android Studio and IntelliJ for a color-blind programmer
(e.g., SO question 37268963).

B. Support for motor skills impaired people (3 discussions)

Fine motor skills are fundamental to interact with GUIs in
mobile devices via touch gestures (e.g., drag to scroll, spread
to zoom in, pinch to zoom out). Limitations in motor skills do
not allow people to execute specific gestures, as reported by
SO question 11443820, which contains an explanation on
how to overlay a button on an Android application as a solution
for users that are unable to scroll the screen looking for buttons.
Another issue associated with motor skills is the interaction
with the Android keyboard. SO question 47099396 relates
to this and it discussed how to set as default a specific
virtual keyboard; however, a developer raised concern about
the accessibility issues it could create: "People with physical
disabilities like Parkinson’s, blindness, etc frequently use spe-
cialized keyboards. You should not take that ability from them."
SO question 30942775 discusses how to use Accessibility
Services to automate text inputs and gestures to overcome fine
motor skills limitations.

C. Hearing impairment (1 discussion)

SO question 25800377 focuses on real-time call transcrip-
tion in Android using the SpeechRecognizer API. The
main point of the discussion is to describe the best way to
transcribe phone calls for a long period of time in Android.
Answers suggest moving the speech recognition service to a
server due to performance and API restrictions.

D. No-specific disability (17 discussions)

We found accessibility related questions (17) that were not
oriented to a specific disability, but used Accessibility APIs
or Accessibility services. In this category, the most common
questions relate to language transformations: text-to-speech
(TTS), speech-to-text (STT) and voice translation to action.
Of these questions, two corresponded to STT issues, four to
automation of actions from voice commands and two to usage
of the TTS API.

The second most common questions not oriented to a specific
disability were style-based feedback with 5 questions. These
questions were mainly related to the focus state of components
in the view and the highlight behavior in components when
pressed. The remaining questions in this category were about
alternatives to touch screens, transformation of screen colors,
and implementation of assistive gestures.

E. Other accessibility aspects (19 discussions)

Concerning Accessibility testing, SO question 26490845
discusses the question "How to automate test for Accessibility
on Android?" The author of the discussion wants to create
end-to-end accessibility tests that could be automated. In brief,
none of the answers gives an easy-to-use solution, and one
response redirects the developer to SO question 22385953
in which the same topic is discussed. In this case, a user
writes a comprehensive answer summarizing an external article



that explains the subject. First, he suggests manually testing
the application with Accessibility Scanner, turning on and off
TalkBack, changing the font size, and checking the project with
Android’s Lint. For test automation, he suggests writing tests
in Espresso (also explored in SO question 46097973) and
analyze audio/visual aspects with external commercial tools.

Internationalization/Translation is another relevant acces-
sibility aspect. It is focused on making software adaptable
to different languages and regions. SO question 18516516
explains in detail how to manage translations of labels and
assistive content descriptions.

The third topic in Other accessibility aspects
is Accessibility in mobile web applications.
SO questions 12433062, 10138968 discuss how to
set CSS rules in web views and websites to change the
style of the accessibility focus frame that appears on buttons
when they are clicked. In both questions, users warn other
developers not to disable the focus frame or make it invisible.

A very interesting category discussed are Legal issues.
In SO question 51320276, the developer asks if using
accessibility services for purposes not-related to implementing
accessibility features in apps is allowed by the Google Play
distribution policies. The accepted answer for the question states
that this is not possible, and the app could be removed from the
Google Play Store. In fact, SO question 52059795 shows an
explicit case where an app was removed as a result of violation
of this policy. Another question related to legal issues asks how
to make an app compliant with government acts of accessibility
(SO question 6900056). In general, answers suggest that
taking into account Android and iOS accessibility guidelines
is enough, and that way, applications could be compliant with
the legal standards.

The last topic discussed is Apps for left handed people. In
SO question 27206868, the developer is trying to detect if
the Left Hand Mode or Force RTL Layout Direction
is enabled in the device settings. This was an old post, and the
developer was developing and app for Android 2.3. Note that
this version of Android had a very limited support for RTL.
However, from Android 4.2, Google added full native support
for RTL and left handed users.

F. Aspects not related to accessibility (137 discussions)

The analyzed sample also included discussions related to
Accessibility API usages that are not-related to any accessibility
aspect. The Accessibility API allows implementing dif-
ferent automation tasks that can even be executed in background
and monitor/modify other apps behavior. For instance, the
Accessibility API has been widely used in testing tools
(e.g., [47], [48]) for automating execution of events in the GUI
and for data extraction.

In 125 questions, developers discussed about using
Accessibility APIs with different purposes such as
monitoring other apps, starting/setting up/stoping accessibil-
ity services, automating tests and simulating ui-interactions,
detecting notifications, copying & pasting, among others.
In SO question 23059868, a developer asked “How can

I retrieve the name, message and time for any incoming
notification on ‘whatsapp’.” The provided answer asserts that
it can be done using accessibility services:

“I was able to do this using Accessibility Service. Using
this, you can listen to all notification on the notification
bar. I listened to application-specification by adding the
package name to the Accessibility Service service info,
which in this case was com.whatsapp. I couldn’t read
the messages, but I get notified whenever a message
arrives.”

Another interesting example is SO question 50103093 in
which the user asked for help when implementing copy-paste
in an Android app:

“I have used it to copy and paste my clipboard text
to wherever my current text cursor is focused but it is
not working? I am kind of newbie to this accessibility
service”

The aforementioned examples and the rest of questions
that we found in this category (i.e., API usages) show the
Android Accessibility API has been used for purposes
other than the ones expected by Google. According to the
official developer reference [49], “Accessibility services should
only be used to assist users with disabilities in using Android
devices and apps.”

As a response to the improper usage of the API, re-
cent versions of Android include a new usage policy
and warnings that are thrown when the accessibility ser-
vices are not used properly as illustrated in answers to
SO questions 50103093 and 47107105:

“[...] But the problem is that Google some time ago
changed policy and now Accessibility Service can be
used only for assist users with disabilities.”

and
“This warning comes up because Android wants to
remind you to think about the blind or visually impaired
people who may be using your app”

The other aspect in this category is API issues and depen-
dency bugs. Some of the issues are because of breaking changes
in the API as discussed in SO question 23610393:

“It works and the method onAccessibilityEvent is called
everytime a text is changed in any application but, when
I run this code in an Android Pie (API 28) only the
onServiceConnected one is called. I suppose something
has been changed in from API 27 to 28 but I can’t
find anything on the net.”

Other issues are generated because of depen-
dencies of other APIs during building time (e.g.,
SO questions 49786779, 26792510). Finally, there
was one question about the impact on energy consumption of
using accessibility services (SO question 35252210).

VI. DISCUSSION

When performing our qualitative study, we observed that
support for the visually impaired was the most common



category. These discussions heavily relate to (i) screen reading
and the abilty to use or customize TalkBack, which provides the
screen reading capability for Android devices, or (ii) individuals
creating specialized keyboards (e.g., to support braille). This
observation suggests that at least a subset of developers are
interested in implementing accessibility, when they have exist-
ing tools that help provide the accessibility features. However,
this subset is small compared to population of Android-related
questions in StackOverflow; the tag android accounted for
about 1 million questions at the moment of extracting the
questions. The motivational study seems to corroborate this
(Section III), since we observed that approximately half of the
apps had content descriptions for all of their elements.

Conversely, we observed a lack of discussions relating to
the other disabilities like motor skill impairments or hearing
impairments. We do not have as mature of a support tool
integrated into the Android system for these two types of
disabilities. In the latter case (i.e., hearing impairment), it may
be partly due to the nature of the disability, i.e., a hearing
impaired user may be able to interact with more apps since
they can read the elements, and sounds can be replaced with
vibrations as a feedback mechanism. In our related work search,
we did not find empirical studies focused on the aforementioned
populations, except for prior work by [33]. Therefore, it would
be beneficial to conduct a study with such users to better
understand the types of support that they might need when
using mobile apps.

Interestingly, in both the motivational and main study, we
observe that developer seldom use the Android accessibility
APIs in the apps, but it is more frequent that developers provide
content descriptions for the GUI elements. In the former case,
developers have limited guidance outside of Google’s guidelines
and Q&A discussion regarding using these APIs. In fact, these
APIs can also be utilized to implement features that require
to handle certain events from external apps as seen in the SO
discussions. Conversely, developers have support for detecting
issues related to assistive content with the Lint tool, since
it provides warnings reporting that content description text
is missing. However, we do observe that developers do not
necessarily understand the importance of this feature as some
discussions on SO indicate that developers do not know the
relation between assistive content and some GUI attributes and
want to just remove the warnings when displayed by the IDE.

Similarly, we observe that developers have questions re-
garding the automation of accessibility testing. While Lint
gives warnings for a particular case of accessibility issues, an
integrated (e.g., in the IDE) accessibility-focused automated
testing framework that provides both the accessibility issues and
conveys the understanding of these issues to developers could
benefit the developers. As previously mentioned, developers
do not necessarily understand how the accessibility warnings
from Lint impacts the app’s usage from a user with a disability.
Other tools like the Accessibility Scanner provide other testing
capabilities, but it is far from a comprehensive solution for
accessibility testing that considers different impairments. This
is an opportunity for future research on approaches and tools

for automated accessibility testing.
It is worth noting that we do not assert that developers

do not care about accessibility, but it is something for which
potentially they may not be aware, especially when considering
the implications for users with certain disabilities. Further
studies involving developers and closed-source apps would be
beneficial to understand (i) the extent to which they consider
accessibility and universal design principles, (ii) the extent
to which they know the existence of regulations (e.g., the
Section 508 act [4]), and (iii) how to support developers with
implementing accessibility features. Similarly, the disparity
between the usage of accessibility APIs and use of content
descriptions may be impacted by the presence of support for
the latter. Additionally, it is not clear how useful those content
descriptions are to users with visual impairments. In future
work, we plan to delve deeper into the semantics of these
attributes to understand whether developers are using them
properly to support accessibility. It is possible that assistive
content is not properly internationalized; thus, future work
could be also devoted to analyze this aspect and provide tools
for automated internationalization of assistive content.

VII. LESSONS

Based on the results and discussion, we identified a set of
lessons regarding supporting mobile developers. For each les-
son, we provide a description based on our work. Additionally,
we distilled an actionable finding from each lesson to guide
future work in this area.

1) Lesson - Developers leverage existing tools to support
accessibility: Developers frequently asked questions related to
TalkBack and supporting screen readers. There is also support
for developers to identify missing content description attributes
provided by Lint. It is not surprising that developers inquire
regarding accessibility-related warnings as they are alerted by
the IDE. Thus, when developers are made aware of accessibility
issues, we observe that developers are inclined to learn more
about the issue, and they are willing to support accessibility,
especially when the burden of the implementation is on external
tools (e.g., screen readers).

Actionable Result: Automated approaches to assist devel-
opers with identifying accessibility issues should be integrated
within the IDE.

2) Lesson - Mobile developers lack background and expo-
sure to accessibility features/tools: Several of the questions
related to screen reading focused on the way text was dictated
(e.g., reading a phone number as “five-five-five” as opposed to
“five hundred fifty-five”) to the user, and developers inquired
how to force a particular way of reading text. These developers
considered how they expected to hear the text and not how
visually impaired users comprehend screen readers. If a
developer was made aware of this issue with Lint, the message
(omitting text about decorative images and utilizing hints) that
they would receive is:

“Non-textual widgets like ImageViews and Image-
Buttons should use the contentDescription attribute
to specify a textual description of the widget such



that screen readers and other accessibility tools can
adequately describe the user interface...” [50]

This simple example demonstrates a lack of guidance in
understanding how users with impairments interact with the
mobile applications beyond providing assistive text.

Actionable Result: Developers could benefit from more
training on universal design principles and detailed guidance
from tools that identify accessibility issues so that they can
better understand the user expectations.

3) Lesson - There is limited support for automatic acces-
sibility testing of diverse disabilities: We observed questions
related to performing UI automation for accessibility testing.
While there are many automated approaches to perform tradi-
tional types of testing, the state-of-the-art tools for accessibility
testing provide a limited scope of and predominantly supports
features focused on visually impaired users (e.g., screen reading,
Explore by Touch, or text/image size).

Actionable Result: There is an opportunity for the research
community to design new robust tools that will automatically
test the accessibility of mobile applications.

4) Lesson - There is a lack of support for developers
with regard to automating the implementation of accessibility
features: While there is limited support to identify accessibility
issues, developers need to understand the issue and then
implement the fix. As previously mentioned, developers seem
inclined to automated support and many questions demonstrated
that they have difficulty implementing certain accessibility
features. Thus, there is a need for an integrated solution that
can assist these developers with supporting accessibility as
opposed to only identifying the lack of accessibility.

Actionable Result: (Semi-)automated solutions for im-
plementing and testing accessibility features would greatly
benefit developers and mitigate the knowledge gap or lack of
experience with respect to accessibility.

5) Lesson - Accessibility APIs are utilized for more pur-
poses than just accessibility: We observed several questions
related to creating Accessibility Services for other purposes
than accessibility as these services can serve to get privileged
information. For example, developers asked about reading
notifications of external apps through Accessibility Services.

Actionable Result: While the Accessibility APIs are de-
signed to provide accessibility support, they can be used to
interact with events from external applications that may result
in privacy concerns; further investigation and support may be
needed to avoid such vulnerabilities.

6) Lesson - Mobile app accessibility is not only about
screen reading: Despite screen reader usage being the most
discussed topic in the analyzed questions, a sample of develop-
ers are also concerned about other topics related to supporting
visually impaired users (e.g., readability for partially visual
impaired users and color transformations for color blind users),
and other accessibility aspects. However, it is important to
note that accessibility related questions are a small sample
of the whole population of android-related questions in SO.
It suggests that accessibility is a topic for which mobile app

developers have limited educational resources and is a topic
that needs to be considered more by mobile developers.

Actionable Result: Practitioners, researchers, and educators
should devote more effort to identify and promote best practices
for designing and implementing accessible apps.

VIII. THREATS TO VALIDITY

Construct validity: in our motivational study, we performed
static analysis to identify the accessibility APIs and usage of
content descriptions; and in our qualitative study, we considered
posts from SO, but these discussions may not have been
complete. It is possible developers considered other principles
of universal design that would require dynamic analysis to be
identified. We do no assert the complete lack of accessibility, but
a limited support for accessibility based on the static analysis.

Internal validity: In terms of the qualitative study, we
utilized multiple coders for each issue and multiple authors
merged similar tags. Additionally, the inter-rater agreement
was computed for each aspect that we coded to demonstrate
the validity of this analysis.

External validity: Our study relates to discussions from
SO regarding Android apps. Other languages, ecosystems, or
Q&A websites may have a different focus with respect to
accessibility. To limit this threat, we do not generalize our
findings to mobile or even all Android apps. Additionally, we
do not assert our catalog is complete as it is possible that
developers experiencing different difficulties document them
through other systems other than SO.

IX. CONCLUSIONS

We presented qualitative and quantitative analyses in order to
evaluate the awareness of accessibility issues among Android
developers. In our motivational study on 13,817 open source
Android apps, we found that half of the apps (50.08%) had all
the elements labeled with assistive content for screen reading,
and the 36.96% of the apps did not have any labeled element.
Pertaining to the use of accessibility APIs, we found that only
2.08% of the apps imported at least one accessibility API.
We also manually analyzed and tagged 366 StackOverflow
discussions related to accessibility. After this process, we built
a taxonomy of the aspects discussed by developers, finding out
that the most frequent one was Support for visually impaired
people. From the visually impaired related discussions, sound-
based feedback discussions stand out above the others.

Surprisingly, Not related to accessibility aspects is the
second most frequent aspect and these questions are related
to API usages but with purposes other than accessibility. We
observed that Accessibility Services are commonly used for
non-accessibility aspects, e.g., retrieve notifications from other
apps or automate touch interactions in the device. In future
work, we aim to understand how developers are using the
Accessibility APIs, and how current features cover the needs
of impaired users. Additionally, we suggest that the researcher
community devote more efforts to investigating the perspectives
of both developers and users perspectives towards universal
design and accessibility of mobile apps, and how to provide
more automated support for accessibility testing.



REFERENCES

[1] R. L. Mace, B. R. Connell, and M. Jones, “The principles of universal
design.” [Online]. Available: https://projects.ncsu.edu/design/cud/about_
ud/udprinciplestext.htm

[2] S. IWARSSON and A. STÅHL, “Accessibility, usability and universal
design—positioning and definition of concepts describing person-
environment relationships,” Disability and Rehabilitation, vol. 25,
no. 2, pp. 57–66, 2003, pMID: 12554380. [Online]. Available:
https://doi.org/10.1080/dre.25.2.57.66

[3] ADA National Network. Americans with disabilities act (ada). https:
//adata.org/learn-about-ada.

[4] U. G. S. Administration. Section 508 of the u.s. rehabilitation act. https:
//www.section508.gov/index.php.

[5] World Health Organization, “World report on disability,” Tech. Rep.,
2011.

[6] C. University. Disability statistics. http://www.disabilitystatistics.org/.
[7] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,

M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in Proceedings of the
11th Working Conference on Mining Software Repositories, ser. MSR
2014. New York, NY, USA: ACM, 2014, pp. 2–11. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597085

[8] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk, “Multi-objective optimization of
energy consumption of guis in android apps,” ACM Trans. Softw. Eng.
Methodol., vol. 27, no. 3, pp. 14:1–14:47, Sep. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3241742

[9] D. Li and W. G. J. Halfond, “Optimizing energy of http requests in
android applications,” in Proceedings of the 3rd International Workshop
on Software Development Lifecycle for Mobile, ser. DeMobile 2015.
New York, NY, USA: ACM, 2015, pp. 25–28. [Online]. Available:
http://doi.acm.org/10.1145/2804345.2804351

[10] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann,
“Ecodroid: An approach for energy-based ranking of android
apps,” in Proceedings of the Fourth International Workshop on
Green and Sustainable Software, ser. GREENS ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 8–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820158.2820161

[11] C. Sahin, M. Wan, P. Tornquist, R. McKenna, Z. Pearson, W. G. J.
Halfond, and J. Clause, “How does code obfuscation impact energy
usage?” J. Softw. Evol. Process, vol. 28, no. 7, pp. 565–588, Jul. 2016.
[Online]. Available: https://doi.org/10.1002/smr.1762

[12] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing and
detecting resource leaks in android applications,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Nov
2013, pp. 389–398.

[13] A. Nistor and L. Ravindranath, “Suncat: Helping developers understand
and predict performance problems in smartphone applications,” in
Proceedings of the 2014 International Symposium on Software Testing and
Analysis, ser. ISSTA 2014. New York, NY, USA: ACM, 2014, pp. 282–
292. [Online]. Available: http://doi.acm.org/10.1145/2610384.2610410

[14] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 1013–1024. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568229

[15] M. Linares-Vásquez, C. Vendome, Q. Luo, and D. Poshyvanyk, “How
developers detect and fix performance bottlenecks in android apps,”
in 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Sep. 2015, pp. 352–361.

[16] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and quali-
tative comparison of program analysis techniques for security assessment
of android software,” IEEE Transactions on Software Engineering, vol. 43,
no. 6, pp. 492–530, June 2017.

[17] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk, “Continuous,
evolutionary and large-scale: A new perspective for automated mobile app
testing,” in 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), Sep. 2017, pp. 399–410.

[18] M. Linares-Vásquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk,
“How do developers test android applications?” in 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
Sep. 2017, pp. 613–622.

[19] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
“Understanding the test automation culture of app developers,” in 2015

IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST), April 2015, pp. 1–10.

[20] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet? (e),” in Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), ser. ASE ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 429–440. [Online]. Available:
https://doi.org/10.1109/ASE.2015.89

[21] R. L. Mace, “Ronald l. mace papers 1974-1998.” [Online]. Available:
https://www.lib.ncsu.edu/findingaids/mc00260/summary

[22] “Get started on android with talkback - android accessibility help.”
[Online]. Available: https://support.google.com/accessibility/android/
answer/6283677?hl=en

[23] R. Hellman, “Universal design and mobile devices,” in Universal Acess
in Human Computer Interaction. Coping with Diversity, C. Stephanidis,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 147–156.

[24] J. Wentzel, E. Velleman, and T. van der Geest, “Developing accessibility
design guidelines for wearables: Accessibility standards for multimodal
wearable devices,” in Universal Access in Human-Computer Interaction.
Methods, Techniques, and Best Practices, M. Antona and C. Stephanidis,
Eds. Cham: Springer International Publishing, 2016, pp. 109–119.

[25] L. Ruzic and J. A. Sanfod, Universal Design Mobile Interface
Guidelines (UDMIG) for an Aging Population. Cham: Springer
International Publishing, 2017, pp. 17–37. [Online]. Available:
https://doi.org/10.1007/978-3-319-60672-9_2

[26] N. Markus, S. Malik, Z. Juhasz, and A. Arató, “Accessibility for the blind
on an open-source mobile platform,” in Computers Helping People with
Special Needs, K. Miesenberger, A. Karshmer, P. Penaz, and W. Zagler,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 599–606.

[27] V. Tomberg and S. Kelle, “Towards universal design criteria for design
of wearables,” in Advances in Design for Inclusion, G. Di Bucchianico
and P. Kercher, Eds. Cham: Springer International Publishing, 2016,
pp. 439–449.

[28] “Mobile accessibility guidelines.” [Online]. Available: https://www.bbc.
co.uk/guidelines/futuremedia/accessibility/mobile

[29] “Web content accessibility guidelines (wcag).” [Online]. Available:
https://www.w3.org/WAI/standards-guidelines/wcag/

[30] M. Kim, E. S. Jung, S. Park, J. Nam, and J. Choe, “Application of a
universal design evaluation index to mobile phones,” in Human-Computer
Interaction. Interaction Platforms and Techniques, J. A. Jacko, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 364–373.

[31] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser, “Automated accessibility
testing of mobile apps,” in 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST), April 2018, pp.
116–126.

[32] D. Kocieliński and J. Brzostek-Pawłowska, “Improving the accessibility
of touchscreen-based mobile devices: Integrating android-based devices
and braille notetakers,” in 2013 Federated Conference on Computer
Science and Information Systems, Sep. 2013, pp. 655–658.

[33] Y. Zhong, A. Weber, C. Burkhardt, P. Weaver, and J. P. Bigham,
“Enhancing android accessibility for users with hand tremor by reducing
fine pointing and steady tapping,” in Proceedings of the 12th Web for All
Conference, ser. W4A ’15. New York, NY, USA: ACM, 2015, pp. 29:1–
29:10. [Online]. Available: http://doi.acm.org/10.1145/2745555.2747277

[34] Y. Mehta, A. Joshi, M. Joshi, and C. Jadhav, “Accessibility of
date picker for touchscreens,” in Proceedings of the 8th Indian
Conference on Human Computer Interaction, ser. IHCI ’16. New
York, NY, USA: ACM, 2016, pp. 64–69. [Online]. Available:
http://doi.acm.org/10.1145/3014362.3014368

[35] Z. Xie, N. Li, and L. Luo, “A study and implementation of vga multi-
resolution on android platform,” in 2015 International Conference on
Computer and Computational Sciences (ICCCS), Jan 2015, pp. 110–115.

[36] L. C. Serra, L. P. Carvalho, L. P. Ferreira, J. B. S. Vaz, and A. P. Freire,
“Accessibility evaluation of e-government mobile applications in brazil,”
Procedia Computer Science, vol. 67, pp. 348 – 357, 2015, proceedings
of the 6th International Conference on Software Development and
Technologies for Enhancing Accessibility and Fighting Info-exclusion.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1877050915031257

[37] B. N. Walker, B. J. Tomlinson, and J. H. Schuett, “Universal design of
mobile apps: Making weather information accessible,” in Universal
Access in Human–Computer Interaction. Design and Development
Approaches and Methods, M. Antona and C. Stephanidis, Eds. Cham:
Springer International Publishing, 2017, pp. 113–122.

https://projects.ncsu.edu/design/cud/about_ud/udprinciplestext.htm
https://projects.ncsu.edu/design/cud/about_ud/udprinciplestext.htm
https://doi.org/10.1080/dre.25.2.57.66
https://adata.org/learn-about-ada
https://adata.org/learn-about-ada
https://www.section508.gov/index.php
https://www.section508.gov/index.php
http://www.disabilitystatistics.org/
http://doi.acm.org/10.1145/2597073.2597085
http://doi.acm.org/10.1145/3241742
http://doi.acm.org/10.1145/2804345.2804351
http://dl.acm.org/citation.cfm?id=2820158.2820161
https://doi.org/10.1002/smr.1762
http://doi.acm.org/10.1145/2610384.2610410
http://doi.acm.org/10.1145/2568225.2568229
https://doi.org/10.1109/ASE.2015.89
https://www.lib.ncsu.edu/findingaids/mc00260/summary
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://doi.org/10.1007/978-3-319-60672-9_2
https://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
https://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
https://www.w3.org/WAI/standards-guidelines/wcag/
http://doi.acm.org/10.1145/2745555.2747277
http://doi.acm.org/10.1145/3014362.3014368
http://www.sciencedirect.com/science/article/pii/S1877050915031257
http://www.sciencedirect.com/science/article/pii/S1877050915031257


[38] A. A. Al-Subaihin, A. S. Al-Khalifa, and H. S. Al-Khalifa, “Accessibility
of mobile web apps by screen readers of touch-based mobile phones,”
in Trends in Mobile Web Information Systems, M. Matera and G. Rossi,
Eds. Cham: Springer International Publishing, 2013, pp. 35–43.

[39] E. Krainz, K. Miesenberger, and J. Feiner, “Can we improve app acces-
sibility with advanced development methods?” in Computers Helping
People with Special Needs, K. Miesenberger and G. Kouroupetroglou,
Eds. Cham: Springer International Publishing, 2018, pp. 64–70.

[40] M. C. C. Araújo, A. R. Façanha, T. G. R. Darin, J. Sánchez, R. M. C.
Andrade, and W. Viana, “Mobile audio games accessibility evaluation
for users who are blind,” in Universal Access in Human–Computer
Interaction. Designing Novel Interactions, M. Antona and C. Stephanidis,
Eds. Cham: Springer International Publishing, 2017, pp. 242–259.

[41] J.-M. Díaz-Bossini, L. Moreno, and P. Martínez, “Towards mobile accessi-
bility for older people: A user centered evaluation,” in Universal Access
in Human-Computer Interaction. Aging and Assistive Environments,
C. Stephanidis and M. Antona, Eds. Cham: Springer International
Publishing, 2014, pp. 58–68.

[42] J.-M. Díaz-Bossini and L. Moreno, “Accessibility to mobile
interfaces for older people,” Procedia Computer Science, vol. 27,
pp. 57 – 66, 2014, 5th International Conference on Software
Development and Technologies for Enhancing Accessibility and
Fighting Info-exclusion, DSAI 2013. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S1877050914000106
[43] “Get started with accessibility scanner.” [Online]. Available: https:

//support.google.com/accessibility/android/answer/6376570
[44] “Improve your code with lint checks.” [Online]. Available: https:

//developer.android.com/studio/write/lint?hl=en
[45] “Use node tree debugging.” [Online]. Available: https://developer.android.

com/guide/topics/ui/accessibility/node-tree-debugging
[46] N. Patil, D. Bhole, and P. Shete, “Enhanced ui automator viewer with

improved android accessibility evaluation features,” in 2016 International
Conference on Automatic Control and Dynamic Optimization Techniques
(ICACDOT), Sep. 2016, pp. 977–983.

[47] K. Moran, R. Bonett, C. Bernal-Cárdenas, B. Otten, D. Park, and
D. Poshyvanyk, “On-device bug reporting for android applications,”
in 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), May 2017, pp. 215–216.

[48] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso, “Barista:
A technique for recording, encoding, and running platform independent
android tests,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), March 2017, pp. 149–160.

[49] Google, “added in api level 4 accessibilityservice. https:
//developer.android.com/reference/android/accessibilityservice/
AccessibilityService.”

[50] Android lint checks: http://tools.android.com/tips/lint-checks.

http://www.sciencedirect.com/science/article/pii/S1877050914000106
http://www.sciencedirect.com/science/article/pii/S1877050914000106
https://support.google.com/accessibility/android/answer/6376570
https://support.google.com/accessibility/android/answer/6376570
https://developer.android.com/studio/write/lint?hl=en
https://developer.android.com/studio/write/lint?hl=en
https://developer.android.com/guide/topics/ui/accessibility/node-tree-debugging
https://developer.android.com/guide/topics/ui/accessibility/node-tree-debugging
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
http://tools.android.com/tips/lint-checks

	Introduction
	Accessibility in Mobile Apps
	Guidelines
	Previous Empirical Studies
	Tools for Assessing Accessibility

	Motivational Mining Study
	Empirical Study
	Data Collection
	Analysis Method

	Results: What accessibility aspects are discussed by developers in Stack Overflow?
	Support for visually impaired people (159 discussions)
	Support for motor skills impaired people (3 discussions)
	Hearing impairment (1 discussion)
	No-specific disability (17 discussions)
	Other accessibility aspects (19 discussions)
	Aspects not related to accessibility (137 discussions)

	Discussion
	Lessons
	Lesson - Developers leverage existing tools to support accessibility
	Lesson - Mobile developers lack background and exposure to accessibility features/tools
	Lesson - There is limited support for automatic accessibility testing of diverse disabilities
	 Lesson - There is a lack of support for developers with regard to automating the implementation of accessibility features
	Lesson - Accessibility APIs are utilized for more purposes than just accessibility
	Lesson - Mobile app accessibility is not only about screen reading


	Threats to Validity
	Conclusions
	References

