
MOLEGA: Modeling Language
for Educational Card Games

Kaylynn Borror
borrorkn@miamioh.edu

Computer Science & Software Engineering, Miami
University

Oxford, Ohio, USA

Eric J. Rapos
rapose@miamioh.edu

Computer Science & Software Engineering, Miami
University

Oxford, Ohio, USA

Abstract
Domain-specific modeling languages abstractly represent
domain knowledge in a way that users can more easily
understand the model content without technical expertise.
These languages can be created for any domain, provided
the necessary knowledge is available. This research uses
educational game design as a demonstration of the power
of domain-specific modeling. Games are useful tools in sup-
plementing the traditional education of students, however,
many educators often do not possess the design or technical
skills to develop a custom game for their own use. MOLEGA
(the Modeling Language for Educational Card Games) is a
domain-specific modeling language that provides a guided
model design environment for these users. Using MOLEGA,
users can create visual models, inspired by UML class dia-
grams, to represent their desired card game, based on two
selected variants. User models are then used to generate exe-
cutable source code for a mobile-compatible, browser-based
game that can be deployed on a server by following the pro-
vided instructions. MOLEGA is evaluated for validity and
correctness using a suite of example models.

CCS Concepts: • Software and its engineering→Devel-
opment frameworks and environments; Domain spe-
cific languages; Visual languages; • Applied comput-
ing→ Interactive learning environments.

Keywords: domain-specific modeling, domain-specific mod-
eling languages, game design, educational games, code gener-
ation, web applications, model-driven software engineering

1 Introduction
Model-driven software engineering (MDSE) uses models to
abstractly represent software systems throughout the engi-
neering process [3]. This approach to software design and
development provides an abstract representation of a com-
plex problem and solution. One of the major benefits pro-
vided through MDSE is the use of domain-specific modeling
languages (DSML). DSMLs abstractly represent software sys-
tems inside a domain in a way where non-technical users
can more easily understand the information the model is
presenting, but do not require advanced technical knowl-
edge of programming and engineering skills [5]. One specific

domain that has the ability to leverage the power of DSMLs
is that of educational game design.

Many people who want to use games to their benefit often
do not possess the design or implementation skills neces-
sary to write code for a game. Educators often fall into this
category, wanting to use games to enhance their students’
learning experiences but not being experienced developers
themselves. Having a way for an educator to create their
own classroom aids without the knowledge on how the aids
work would be extremely helpful for the educator. This envi-
ronment is a perfect demonstration of the power of DSMLs.
This paper presents MOLEGA (the Modeling Language

for Educational Card Games), a DSML that allows educators
and other users to create web-based card games for usage in
classrooms or similar settings. User models are created using
our MOLEGA web editor, which provides a guided and sup-
portive live-modeling environment that consistently ensures
that only valid models are created. From these models, fully
functional code for the game can be generated in a format
where it can be deployed in a web-based environment with
minimal technical knowledge required, following detailed
instructions. This model-to-text code generation provides
functional code without the user needing any understanding
of the model transformation process.
Domain-specific modeling has gained traction due to its

ability to facilitate the development of technical systems
by those with limited technical expertise. However, limited
research exists on the usage of DSMLs in educational games.
Specifically, no published research exists for the usage of
DSMLs for card-based educational games.
While there are previous instances of code generation

engines that transform from class-based languages, little
research exists for code generation frommodels toweb-based
languages, such as Javascript. This work aims to further
expand the application of DSMLs to a new target, both in
terms of domain and technical implementation.

While DSMLs aim to solve many issues surrounding a lack
of technical expertise, many languages are often still very
complex, leading to barriers in their adoption. To combat
this, we also believe that a DSML must provide its users with
adequate feedback and guidance during the modeling and
code generation processes such that they are able to con-
sistently generate functional code without having to worry
about minor semantic or syntactic details.



Kaylynn Borror and Eric J. Rapos

To demonstrate further applications of domain-specific
modeling, this paper poses two research questions:

• RQ1: Can domain-specific modeling be used to create
web-based educational card games?

• RQ2: Does a guided framework ensure the generation
of consistently correct executable game code?

In responding to these research questions, we also make the
following contributions:

• creation of a DSML for the definition of custom web-
based educational card games

• implementation of a model-to-text code generation
engine to produce executable web-based code

• implementation of a complete web-based framework
integrating the DSML and code generation processes,
applied to two example game types

• systematic evaluation of the code generation process
covering all aspects of the two example games

2 Background & Related Work
Given the nature of the venue, a base understanding of
DSMLs and language design is assumed. However, it is im-
portant to also understand the chosen application domain
of education games, as well as examine some of the closest
related works. This section will explore these topics in detail.

2.1 Educational Game Design
Educational games, or “edugames," are a type of game that
are used to aid in learning. While traditional games have
the goal of creating a solely enjoyable experience, edugames
have the primary goal of educating the players while also
offering an enjoyable experience as a secondary effect. To
serve their purpose, edugames must follow both traditional
game design principles and pedagogical principles. This can
be difficult, since game designers and education experts often
do not possess enough knowledge about each others’ domain
areas to work completely independently [2].
Card-based activities are a common educational tool, of-

ten seen in the form of memorizing flash cards. However,
card-based games have also been shown to have a positive
effect on learning. A 1998 study involved teaching students
about gastrointestinal physiology through the use of modi-
fied versions of Go Fish and Gin Rummy [9]. A similar study
in 2011 required pharmacy students to play games based on
the same two card games, three times each over a six-week
period. The pharmacy study found that the student partici-
pants had an overwhelmingly positive reception to the card
games and felt that it contributed to their learning [1]. More
recently, a custom variant of the popular game Cards Against
Humanity has been used in teaching engineering ethics [4].

2.2 Related Work
Work by Prasanna [10] and the DSML GLiSMo [12] [13] are
related to this work. For both works, DSMLs were created

to represent different aspects of game development, such as
choices that the player character can make at each stage of
the game, along with areas where the insertion of mathe-
matical problems is valid. Neither of these languages offer
any code generation capabilities in their published research.
Rather, they are meant to be used as visualization tools for
a user to follow along with in order to understand the pro-
gression of game events from beginning to end.

Zahari et al. proposed an extension to the GLiSMo DSML,
called FA-GLiSMo [14]. This extended DSML intends to rep-
resent educational adventure games while adopting elements
to encourage Flow Theory: a learning theory that describes
the state of complete engagement to an activity. FA-GLiSMo
intends to build upon GLiSMo’s drawbacks, aiming to em-
bed elements in the learning theory into educational games
represented by the language.
Eterovic et al. offer an abstract visualization of the con-

nections between Internet of Things (IoT) technologies [7].
This approach, based on UML diagrams, allows both tech-
nical and non-technical users to configure the plan of their
own IoT systems. This language was tested through the use
of human interaction with evaluations done on two types
of user groups: those who had UML experience and no IoT
experience and those who had experience in neither topic.
SharpLudus is a code generation environment intended

for generating action-adventure games through the use of
domain-specific languages (DSL) [8]. This environment’s
DSL, SLGML, is focused around defining the game world,
allowing the representation of elements like rooms and their
design, non-player characters and their actions, and specifi-
cations for when a player character lives or dies. SharpLudus
generates C# classes in response to receiving valid SLGML
diagrams.

MOLEGA differs from these related works in several ways.
Unlike previous works that define DSMLs for edugames,
this research not only defines a DSML for a different type
of edugame (i.e., card games), but also incorporates a code
generation algorithmwhich allows a user to use the DSML to
represent a game they want to exist, then to actually be able
to create it. Rather than allowing a user to create a game’s
objects and the flow of gameplay, the MOLEGA allows the
user to specify any type of game included in the DSML’s
metamodel, along with the ability to customize a variety of
features involved with the chosen game type.

3 MOLEGA - Modeling Language for
Educational Games

MOLEGA is a DSML that allows users to create models rep-
resenting educational card games. The MOLEGA web edi-
tor environment provides a completely guided model cre-
ation experience, which includes metamodel conformance
checking, dynamic type checking, the prevention of breaking
changes, and descriptive error messages. This section begins



MOLEGA: Modeling Language for Educational Card Games

by discussing MOLEGA’s target games and concludes with
a broader look at the language framework.

3.1 Target Games
In our initial implementation of MOLEGA, two different
game types were chosen to represent varied functionality:
Community Judge and Relations, discussed below.
The rules of Community Judge type games are almost

identical to those of Cards Against Humanity 1 or Apples
to Apples 2. During a game turn, one player is designated
the Judging player, drawing a question card which displays
a prompt, and all other players must play one response card
from their hand. After all other players have submitted their
card choices, the Judging player chooses which of the played
cards they feel best fits their card’s prompt. The player who
played the chosen card gains a point and the Judging player
title is moved to the next player. One round has passed when
all players have had a chance to judge. The player with the
most points at the end of a certain number of rounds, or the
player who reaches a certain score first, wins.
The rules of Relations games are a modified mixture of

Gin-Rummy and Go Fish. During a player’s turn, they can
choose cards in their hand that are related to one another.
They can do this as many times as they see fit during their
turn. The player can also click on their opponent’s area to
see their related card collections at any time. When they
have made all of their decisions, the current player can then
either pass the turn or discard a card in their hand while
passing their turn. This power then moves on to the next
player in line. The player with the most points at the end
of a certain number of rounds, or the player who reaches a
certain score first, wins.
Community Judge is a good choice for the first type of

game due to the popularity of nearly identical games like
Cards Against Humanity, a variant of which has been used
in teaching engineering ethics [4]. Additionally, this type
of game doesn’t have a strict rule structure, since the win-
ner of a turn is determined by player opinion and not an
in-game mechanic. This makes it easier to customize the con-
tent on both card decks. Relations, however, being a mixture
of games with stricter rule structures, needs a little more
attention to ensure that the game behaves correctly to player
input. This is done by making sure the related cards are listed
correctly in the card file. While the card file setup may be
a little more complex than Community Judge, Relations is
another valid target for MOLEGA. Previous literature shows
that when used in an educational context, modified versions
of Go Fish and Gin Rummy are beneficial for student learn-
ing [1] [9].

As it is not possible to create a DSML to model every pos-
sible educational card game variant in order to answer RQ1,

1https://cardsagainsthumanity.com/
2https://www.mattelgames.com/games/en-us/family/apples-apples

the selection of these two types of games, along with their in-
cluded variants, aims to provide a representative sample that
is sufficient in supporting the research question. By choosing
two significantly different game types with multiple varia-
tions, MOLEGA serves as a proof of concept realization and
demonstration of the power of domain-specific modeling to
represent educational games without the need to provide
full coverage. The contents of the game cards, regardless of
the game type, are provided by CSV files, which are filled in
by the user after generation.
The implementation of these target games is done in a

Node.js environment. To handle client-server interactions
simply and smoothly, the Socket.io library 3 is used. Node.js
was chosen for this reason. While Socket.io has been adapted
for other languages such as Java, C++, and Python, it was
originally written as a Javascript framework.

The games are coded in a way where both the mobile and
browser versions are readable and scaled to size. The differ-
ence between browser play and mobile play can be seen in
Figure 1, Figure 2a, and Figure 2b. Figure 1 displays the game
interface for a computer browser player, while Figures 2a
and 2b display the game interface for a mobile player, where
the first figure shows the game table and players while the
second is scrolled down on the mobile device, showing the
player’s hand of cards.

Figure 1. Browser Community Judge Play

To know what sort of customizable attributes that the
modeling language should include, these target games were
created first. By having example targets complete and work-
ing, it was possible to find the variation points between
different versions of the various games, which informed the
language design.

3.2 MOLEGA Framework
MOLEGA, (Modeling Language for Educational Card Games)
is a DSML and environment for the development of the two
target types of games. MOLEGA supports customization
3https://socket.io/

https://cardsagainsthumanity.com/
https://www.mattelgames.com/games/en-us/family/apples-apples
https://socket.io/


Kaylynn Borror and Eric J. Rapos

(a) Table View (b) Hand View

Figure 2. Mobile Version of Community Judge

of both game setup elements as well as game content and
several rules.

Beyond simply being an editor for MOLEGA models, the
framework provides guided model-time support to users to
help ensure the models they produce are valid and consis-
tent, thus ensuring only correct code is generated for use.
This support is provided in several ways. First, the editor
provides a constant conformance check to ensure that all
rules are being met for the game under development. Should
a user fail to meet any requirement of the meta-model, the
Meta-Model Conformance pane indicates this with a red X
(rather then the normal green check) and provides a detailed
message indicating how to resolve the issue. If a model con-
tains conformance errors, the code generation functionality
is disabled, preventing the environment from generating in-
valid code. Beyond this conformance checking, the MOLEGA
framework provides type checking to ensure valid values
are provided for attributes; not only does it check for type
matching, but it provides context-sensitive value checking
as well, such as ensuring the minimum number of players is
always less than or equal to the maximum number of players.
Finally, the editor ensures that any breaking change is pre-
vented, the error is identified, and the change is rolled back
to the most recent stable state. This ensures that the model
is rarely in a state where incorrect code could be generated.
The web editor layout and File menu options are seen in

Figure 3. More details of the editor contained in theMOLEGA
framework are discussed in Section 4.2.

4 Domain Specific Modeling Language
Design

To answer RQ1, we defined a DSML to represent the web-
based educational card games discussed in Section 3.1. This
section describes the design and implementation of that lan-
guage, and is organized by explaining the metamodel design

Figure 3. MOLEGA Web Editor with File Menu Icon Ex-
panded (control panels typically appear to the right, as seen
in Figure 5)

for MOLEGA, followed by the web editor and environment
for MOLEGA and the design choices associated with it.

4.1 Metamodel Design
MOLEGA’s metamodel was created using a modified version
of UML class diagrams provided by the Instructional Mod-
eling Language (IML) [6, 11]. MOLEGA’s metamodel was
designed to represent the two chosen target games, which
can be seen in Figure 4, and is discussed in further detail in
this section.

Thismetamodel’s design assists in answeringRQ1. DSMLs
are meant to be useful in accurately representing domain
software in an abstract way. Attributes in the model should
encompass the domain it is representing. For MOLEGA to be
a useful DSML, attributes for the different class types were
determined by first creating the example target games. Each
example game contains variation points at which customiza-
tion of the system can occur. These include colors of specific
in-game elements, the way that a player wins a game, and
several others. The classes and attributes of MOLEGA were
designed based on those variation points.
This metamodel design allows all customizable compo-

nents of the target to be represented in any model gener-
ated by a user. For either of the classes that inherit from
«Game», the listed attributes (professor’s name, number of
rooms, maximum number of players, etc.) can be customized
in order to meet the user’s needs. Similarly, in the various
«Theme» classes, different colors of different pieces of the



MOLEGA: Modeling Language for Educational Card Games

Figure 4. MOLEGA Metamodel

target are also fully customizable, with multiple attributes
allowing multiple different colors.

4.2 Web-Based Model Editor
The web editor for creating MOLEGA model instances is
a modified version of the structural modeling web UI for
IML [6]. While the IML web editor allows for the import of
any IML-type metamodels to use for creating models, the
MOLEGA web editor has the MOLEGA metamodel as the
default and only metamodel to use. MOLEGA’s web editor
can only be used to generate games as defined by MOLEGA’s
syntax. The UI for MOLEGA’s web editor with no model
created is seen in Figure 5, which shows the initial error
explaining that at least one game object is needed to conform
to the meta-model.

This decision was made for a few reasons. IMLs structural
modeling editor already had a finished built-in model con-
formance check. This saved time in generating MOLEGA’s
web editor since more time could be spent on implementing
error checking from elements such as user input into the

Figure 5. MOLEGA Web Editor (main model pane on left
side scaled down for readability of other content)

model rather than building the entire conformance checking
algorithm from scratch. The Metamodel Conformance panel
in the editor makes identifying model errors convenient and
allows for a dynamic report of errors rather than returning
all model conformance issues at the time of code generation.
The browser-based nature of the editor also makes it a

good decision for use. Users are not required to download a
piece of software they may not be familiar with and any re-
quired plugins or modules to make it work. They can instead
go to the website where MOLEGA is hosted and complete
the entire process in one single framework. Since the target
of the code generator is a web-based game, the modeling
editor also being web-based keeps the inputs and outputs
consistent.
Aside from restricting the IML editor to only support

MOLEGA-defined models and related functions, other en-
hancements were made in order to make the MOLEGA mod-
eling editor more robust. These modifications were made to
ensure that the models created in the editor not only con-
form to the MOLEGA metamodel, but also that the semantic
details inside the model accurately represent a valid game.
For example, MOLEGA checks that only one game object
is defined in the modeling environment at a time. Other
modifications made to the web editor include checking that
all numeric values are positive, making it impossible that
the maximum number of players is less than the minimum
number of players, and forcing any colors entered into the
modeling environment to be in a format interpretable by a
web program (e.g., a CSS or hexadecimal color code).

5 Code Generation
To answer the first part of RQ2, particularly the generation
of the code, we present the details of our code generation pro-
cesses. The entire code generation process is implemented



Kaylynn Borror and Eric J. Rapos

using Javascript within the MOLEGA framework, generat-
ing corresponding functional code based on the model of
the game developed in the editor. This section covers the
prerequisites for code generation as well as how the code
generation process works.

5.1 Generation Prerequisites
In order for successful code generation to take place, a valid
model must first be created in the modeling environment.
A valid model is a model that completely conforms to the
MOLEGA metamodel and its constraints, which is commu-
nicated to the user via the Metamodel Conformance panel
on the model editor’s UI. When this panel displays a red
error marker (✗) and a list of issues, the model does not
fully conform to the MOLEGA metamodel. Only when the
panel displays a green success marker (✓), and the model is
considered valid, is code generation possible.

A valid Community Judge model consists of four required
components and one optional component. A Community
Judge game must have a CommunityJudgeGame class, a win-
Condition class, a QuestionsDeck class, and an AnswersDeck
class. The optional component is a Theme class. Meanwhile, a
valid Relations model consists of three required components
and one optional component. A Relations game must have a
RelationsGame class, a winCondition class, and a GeneralDeck
class. The optional component is a Theme class.

5.2 Transformation Process
The code generator is triggered by a Javascript function
when the “Export Website Code" menu option is clicked. A
psuedocode listing of the code generation process is seen
in Figure 6. The first step in this process is to transform the
model in the editor into a format where the contents can be
parsed for class and attribute names and values. The serial-
ization of the model leverages the existing IML algorithm.
This serialization is then parsed into an xml format using
jQuery’s built-in parseXML() function in order to use the xml
tags to navigate the model’s elements rather than manually
parsing the String output.
To ensure that the classes being parsed are connected to

one another using the appropriate composite relationships,
the Relation tags are especially important. Each Relation tag
is composed of multiple elements, the two most important
for this task being the source element and the destination
element. The source element lists the id for the source class
of the composite, in the case of MOLEGA models this class
is always either a CommunityJudgeGame class or a Relation-
sGame class. The destination element’s value is the id for
the connecting class. If a class exists in the model, but is not
connected then there is no Relation tag with the id of that
class. However, if the class is connected, then the id will be
present in a tag. This is important for determining which
classes in the model conform to the metamodel (i.e., are con-
nected with composites) and which classes are free-floating

in the modeling editor, as free-floating classes are not con-
sidered conformance errors in accordance to the MOLEGA
metamodel.

The code generator stores the ids of models in the active,
non-floating classes to ensure that only these classes are
represented in the code generated. Attributes contained in
the model are sorted into one of three String variables: a
style variable, an app variable, or a constants variable. The
style variable contains all text meant to make up the style.css
file for the code output, which mostly includes background
colors of webpage elements and other colors that do not
change. The app variable contains the global variables re-
quired for the server to run the game code, which consists
of attributes such as the number of rooms, the player limits
for each room, and the file names for the CSV card files. Fi-
nally, the constants variable contains the client side variables
which are independently kept for each connecting client.
These include the card color attributes and the font which is
used for displaying information to the client. When all active
classes have been parsed, the above String variables are then
used to fill in values in template source code files in order to
be added to a zip file for export. This is done using JSZip 4, a
Javascript-specific library for generating and modifying zip
files.

While the custom elements come directly from the input
model, several other files required for the game to func-
tion correctly are fixed for any input model. The code gen-
erator only generates Community Judge-specific files for
models that have the CommunityJudgeGame class. Similarly,
Relations-specific files are only generated for models that
contain the RelationsGame class. The collection of templated
and fixed files is done using XMLHttpRequest objects to ac-
cess the bodies of these files on the server. To avoid these
asynchronous requests from ending after the export has oc-
curred, these requests are nested on one another to ensure
that all required files are included before a full export occurs.

6 Evaluation
To answer the second part of RQ2, regarding whether the
code generated in the previous section is consistently cor-
rect and executable, we must formally evaluate the code
generation process. To achieve this, we focused on the cor-
rectness of the generated code in comparison to the expected
output. A systematic evaluation plan was chosen to test and
verify both positive and negative error cases. This section
first explains the design of theMOLEGA evaluation, followed
by the results and a short discussion of the evaluation.

6.1 Experimental Design
The design of MOLEGA’s evaluation is split into two major
categories: valid and invalid models. These two categories
could then further be split again by specifying the target type

4https://stuk.github.io/jszip/

https://stuk.github.io/jszip/


MOLEGA: Modeling Language for Educational Card Games

1 activeClassIds = [], constants="", style="", app=""
2
3 for relation in all Relation elements:
4 if ! activeClassIds includes relation.destination:
5 activeClassIds.push(relation.destination)
6 if ! activeClassIds includes relation.source:
7 activeClassIds.push(relation.source)
8
9 for class in all Class elements:
10 if activeClassIds includes class.id:
11 if class.name includes "CommunityJudge":
12 save "CommunityJudge" as gameType
13 else if class.name includes "Relations":
14 save "Relations" as gameType
15 for attr in class.attributes:
16 format each attr in "var " + attr.name + " = "

↩→ + attr.value + ";" format
17 place attribute in the correct String (

↩→ constants, style, app)
18 if no Theme class exists:
19 apply default theme to constants and style
20
21 if gameType == "Community Judge":
22 generate Community Judge-specific static files
23 else:
24 generate Relations-specific static files
25
26 generate remaining files (readme, package.json,

↩→ constants, style)
27 export zip file

Figure 6. Code Generation Pseudocode

to be tested: Community Judge-type models and Relations-
type models. This taxonomy exhaustively covers all possible
model categorizations able to be developed using MOLEGA.
For valid models, three boolean criteria were checked:

“Generate?", “Correct?", and “Does it Run?". The first success
criterion relates to whether or not any code is generated from
the model. For the second criterion, the result is considered
correct if it generated the expected code. If code is generated
but not correct, then this means the game is not customized
properly in the way that the user intended.
In invalid models, only one criterion was tested: “Gen-

erate?". In these tests, the passing answer to this question
should be “No". Since invalid models should not generate
code, they have no need to be correct. Essentially, since these
models are created with intentional errors, they should not
allow code generation, and instead present the user with
an error. Thus a result of “No” for this criterion indicates a
successful evaluation. In each of these cases, detailed error
messages explaining how to resolve the errors and enable
successful code generation are provided to the user.

For each valid model, one element was tested at a time to
ensure that the component change in the model accurately
resulted in the corresponding target code. For example, the
base model for a Community Judge game has a game object,

a win condition of winByRounds, a QuestionsDeck, and an An-
swersDeck. In this model, all default values are kept the same
while adding valid input to the default missing attributes in
order to make the model valid. This follows a simple muta-
tion testing approach to easily identify the location of any
errors introduced by a subsequent test evaluation.

To test that generated code is in fact correct, the expected
output for each model transformation was created manually.
While tedious, this ensures that the expected files align with
what a human user would expect to encounter rather than
relying on another machine-generated file that could be
generating incorrect content. Any files that are intended
to be customized were manually created to compare with
the generated files. A bash script simplified this comparison
task: unzipping the generated code and comparing all custom
files in the generated code to the manually created expected
files, ignoring formatting to avoid flagging changes with
no functional impact. If a conflict arises, the script notes
as such along with which files are not the same. No matter
if all tests pass or fail for that model, after completing one
generated zip file, the script then moves on to the next one,
only requiring one execution of the script to check all valid
model code generations. As long as the generated zip file
and the expected output directory have the same name then
the correct files are checked for discrepancies.

To ensure that validmodels produced executableweb game
code, after passing the code generation and correctness tests,
each generated game was launched in a browser. This final
step evaluates the “Does it Run?" criterion. While a game file
with code correctness should theoretically launch and play
with no issues, physically launching each game gives extra
assurance that each valid model creates a working target.

6.2 Results
Tables 1a through 1d display the results of all tests conducted.
These tests were generated in order to exhaustively cover
all possible cases, both valid and invalid. Table 1a displays
the valid Community Judge models, and Table 1b shows the
valid Relations models. Table 1c lists test cases addressing
invalid Community Judge models, and Table 1d shows the
invalid Relations models. With every single test case having
passed, we produce a final result of 100% success across all
criteria. We have made the MOLEGA environment, along
with our evaluation dataset, publicly available 5.

6.3 Discussion
All tests for valid models passed. These tests evaluated the
code generator’s ability not only to export code in response
to a valid model, but also that the code generated was cor-
rect and capable of execution. This supports an affirmative
answer to both of this paper’s research questions. Since the
purpose of these verification tests was to ensure that the code

5https://doi.org/10.5281/zenodo.5167719

https://doi.org/10.5281/zenodo.5167719


Kaylynn Borror and Eric J. Rapos

Table 1. Evaluation Results for the 4 Experiments

(a) Valid Community Judge Model Results
Valid Community Judge

Test Case Generate? Correct? Does it Run?
Base Model

Base Valid Model ✓ ✓ ✓

Class Changes
Use Blue Theme ✓ ✓ ✓

Use Red Theme ✓ ✓ ✓

Use Green Theme ✓ ✓ ✓

Use Custom Theme (CSS, all valid) ✓ ✓ ✓

Use Custom Theme (hex, all valid) ✓ ✓ ✓

Use Win By Score ✓ ✓ ✓

Extra Theme (Not Connected) ✓ ✓ ✓

Extra Win Condition (Not Connected) ✓ ✓ ✓

Extra Questions Deck (Not Connected) ✓ ✓ ✓

Extra Answers Deck (Not Connected) ✓ ✓ ✓

Attribute Changes
Change Prof Name ✓ ✓ ✓

Change Num of Rooms ✓ ✓ ✓

Change Max Players ✓ ✓ ✓

Change Min Players ✓ ✓ ✓

Change Num Starting Cards ✓ ✓ ✓

Change Deck Name (Questions) ✓ ✓ ✓

Change Deck Name (Answers) ✓ ✓ ✓

Change Color Theme ✓ ✓ ✓

Change Table Color ✓ ✓ ✓

Change Hand Card Color ✓ ✓ ✓

Change Font ✓ ✓ ✓

Change Question Card Color ✓ ✓ ✓

Change Hand Card Color ✓ ✓ ✓

Change Question Card Font Color ✓ ✓ ✓

Change Rounds to Winner ✓ ✓ ✓

Change Score to Winner ✓ ✓ ✓

(b) Valid Relations Model Results
Valid Relations

Test Case Generate? Correct? Does it Run?
Base Model

Base Valid Model ✓ ✓ ✓

Class Changes
Use Blue Theme ✓ ✓ ✓

Use Red Theme ✓ ✓ ✓

Use Green Theme ✓ ✓ ✓

Use Custom Theme (CSS, all valid) ✓ ✓ ✓

Use Custom Theme (hex, all valid) ✓ ✓ ✓

Use Win By Score ✓ ✓ ✓

Extra Theme (Not Connected) ✓ ✓ ✓

Extra Win Condition (Not Connected) ✓ ✓ ✓

Extra General Deck (Not Connected) ✓ ✓ ✓

Attribute Changes
Change Prof Name ✓ ✓ ✓

Change Num of Rooms ✓ ✓ ✓

Change Max Players ✓ ✓ ✓

Change Min Players ✓ ✓ ✓

Change Num Starting Cards ✓ ✓ ✓

Change Use Discard Pile to False ✓ ✓ ✓

Change Deck Name (General) ✓ ✓ ✓

Change Color Theme ✓ ✓ ✓

Change Table Color ✓ ✓ ✓

Change Hand Card Color ✓ ✓ ✓

Change Font ✓ ✓ ✓

Change Question Card Color ✓ ✓ ✓

Change Hand Card Color ✓ ✓ ✓

Change Question Card Font Color ✓ ✓ ✓

Change Rounds to Winner ✓ ✓ ✓

Change Score to Winner ✓ ✓ ✓

(c) Invalid Community Judge Model Results

Invalid Community Judge
Test Case Generate? Correct? Does it Run?

Missing Classes
Missing Game ✗ N/A N/A
Missing Questions Deck ✗ N/A N/A
Missing Answers Deck ✗ N/A N/A
Missing Win Condition ✗ N/A N/A

Missing Attribute Values
Missing Prof Name ✗ N/A N/A
Missing Questions Deck Name ✗ N/A N/A
Missing Answers Deck Name ✗ N/A N/A
Missing Values from Custom Theme ✗ N/A N/A
Missing/Deleted Other Attributes ✗ N/A N/A

Surplus Relations
Surplus Themes ✗ N/A N/A
Surplus Win Conditions ✗ N/A N/A
Surplus Questions Decks ✗ N/A N/A
Surplus Answers Decks ✗ N/A N/A
Surplus Games ✗ N/A N/A

Invalid Inputs
Max Players Less Than Min Players ✗ N/A N/A
Both Decks the Same File Name ✗ N/A N/A
Attributes Zero or Negative ✗ N/A N/A
Win Rounds Zero or Negative ✗ N/A N/A
Win Score Zero or Negative ✗ N/A N/A
Invalid CSS/Hex Color ✗ N/A N/A
Invalid Font Type ✗ N/A N/A
Invalid Composite Connection ✗ N/A N/A

(d) Invalid Relations Model Results

Invalid Relations
Test Case Generate? Correct? Does it Run?

Missing Classes
Missing Game ✗ N/A N/A
Missing General Deck ✗ N/A N/A
Missing Win Condition ✗ N/A N/A

Missing Attribute Values
Missing Prof Name ✗ N/A N/A
Missing General Deck Name ✗ N/A N/A
Missing Values from Custom Theme ✗ N/A N/A
Missing/Deleted Other Attributes ✗ N/A N/A

Surplus Relations
Surplus Themes ✗ N/A N/A
Surplus Win Conditions ✗ N/A N/A
Surplus General Decks ✗ N/A N/A
Surplus Games ✗ N/A N/A

Invalid Inputs
Max Players Less Than Min Players ✗ N/A N/A
Relations Attributes Zero or Negative ✗ N/A N/A
Win Rounds Zero or Negative ✗ N/A N/A
Win Score Zero or Negative ✗ N/A N/A
Invalid CSS/Hex Color ✗ N/A N/A
Invalid Font Type ✗ N/A N/A
Invalid Composite Connection ✗ N/A N/A



MOLEGA: Modeling Language for Educational Card Games

generation process consistently produces valid and correct
code, the fact that all tests passed demonstrates that not only
can domain-specific modeling be used for educational card
games (RQ1), but that our method is capable of consistent
correctness in all cases. Moreover, since all generated code
successfully ran, this code can also be claimed as executable.

In addition, all tests passed for invalidmodels aswell. Since
these tests were intended to end in a non-generation scenario,
the presence of all “X" answers to the “Generate?” criterion
qualifies as a pass. Since RQ2 investigates the correctness
of the generated code, the prevention of generating any
code when the model is incomplete or incorrect preempts
the possibility of generating incorrect code. If a model is
incomplete or does not conform to its metamodel, then no
transformation should occur to ensure that only consistently
correct code is generated. This behavior is confirmed through
our experiments and results in Tables 1c and 1d.

With respect to RQ1, through the evaluation experiments
dedicated specifically toRQ2, we demonstrate thatMOLEGA
can be used to create web-based educational card games,
confirming that domain-specific modeling is a useful tool
for this application. MOLEGA is capable of representing all
possible game variants, indicating that there are no aspects
lost through the abstraction provided through modeling.

With respect toRQ2, the evaluation confirms that through
the guided editor and strict metamodel conformance require-
ments, every valid model where a game was expected to be
produced led to consistently correct and executable code.
Furthermore, any models that contained invalid or missing
game elements would not lead to broken or incomplete code,
preventing users from attempting to use code that would
not work. In summary, through this evaluation, it is shown
that not only is it possible to use domain specific modeling
to create educational games (RQ1), but the provision of our
strongly guided modeling approach ensures that only correct
and executable code will ever be provided to users (RQ2).

7 Conclusion
To conclude, we first present a look at some threats to the
validity of our implementation and evaluation within the
context of our approach. Following this, wewill present some
potential areas of future work to expand on the project’s
contributions. Finally, we summarize the contributions of
our work made to the area of domain-specific modeling.

7.1 Threats to Validity
MOLEGA is limited to representing two specific rulesets for
the chosen target games. Considering the sheer number of
card game rulesets that exist, this is an initial limitation to
this work. Currently, MOLEGA’s metamodel is simplified
to accommodate only the selected games, however, due to
the abstract nature and the modularity of the class-style
models, it is possible to extend to other card games, providing

more variation points. While adding a newmultiplayer game
type or a new kind of win condition would be rather simple,
updating the code generator to include this new variant
would require significant refactoring, since each new ruleset
would need to be created from scratch. Essentially, the bottle
neck for this would be in the code generation process, rather
than the modeling language definition.
While our evaluation validates the functionality of the

web-based framework and code generation processes, it does
not involve any user studies for testing the usability, use-
fulness, or enjoyment of either the web editor or the target
games generated. Without this level of detailed evaluation,
we are unable to make any claims about the usefulness of our
approach, only the validity of the code generation process,
thus making our work more of a proof-of-concept rather
than a fully robust implementation.
Evaluation experiments for this project were conducted

by comparing the generated code to manually created ex-
pected outputs. As with any work with manual process, the
possibility of human error is introduced. However, without
a benchmark to compare against, this was the best option
to demonstrate validity. There does not currently exist an
automated way of creating expected code outputs for a sys-
tem model, as that is the focus of our work, to reduce the
risk. One way this threat was reduced is by reusing as many
previously validated outputs wherever possible.

7.2 Future Work
We plan to conduct user studies using the MOLEGA frame-
work to further validate its usefulness as a tool for use by
educators, as well as evaluating the resulting games. By de-
signing two further evaluation experiments, we plan to fur-
ther demonstrate the benefits of the MOLEGA framework.
First, we plan to evaluate MOLEGA’s use by educators in
various disciplines to ensure non-technical users are able to
effectively produce games using the modeling environment.
As part of this experiment we will collect both quantitative
and qualitative data in the form of user surveys. The sec-
ond expanded experiment will see the use of generated code
by students in several classes to play generated games and
provide feedback about their experiences. This evaluation
focuses more on the resulting games, but is an important
factor further supporting RQ1. This expanded evaluation
would move beyond asking “Does it Run?” to a more robust
evaluation of “Is the Game Playable?”.

Another area of future work relates to expanding the tar-
get games supported. Currently, the two games provided
were chosen due to their popularity and educational sup-
port, but further games would only expand the contributions
of our framework. Refactoring the current MOLEGA meta-
model to enable both multiplayer and single-player games,
or to allow the combination of game rulesets would increase
the customizable aspects of this algorithm, allowing more
control over the output to the user creating a model.



Kaylynn Borror and Eric J. Rapos

7.3 Summary
In specific domains, such as educational game design, mod-
els are used to help non-technical experts represent domain
knowledge. While not directly involved in game design, edu-
cators can benefit from the accessibility of games for use in
their classrooms. However, educators often do not have the
technical skills to create these games themselves. Through
DSMLs, these potential users can leverage MDSE to obtain
functional games, needing to only specify the custom aspects
of their game via a graphical editor.
MOLEGA’s framework includes a graphical editor, pos-

sessing the ability to represent two types of card game while
providing various customizable features to the games. Most
importantly, the content on the cards in the game is cus-
tomizable, allowing games generated by MOLEGA’s code
generator to be used not only as generic card games, but
also as educational tools by replacing the default content
with specific educational content. This generated code can be
hosted with minimal technical support and can be accessed
by any device with browser capabilities.
The code generation process has been evaluated using

a systematic approach for both valid and invalid models.
For models that are valid, code is shown not only to be
successfully generated, but also correct when compared to a
manually created expected output, and capable of running on
a server. For models that should not generate code, they fail
to run the code generator and give the user an error message
as intended. These tests ensure that not onlyMOLEGA can be
used to represent and generate web-based educational card
games, but also that any code generated by the algorithm is
consistently correct and executable in a server environment.
While it requires minimal technical knowledge or sup-

port to host the generated game code, MOLEGA provides
an approach to custom web code generation that requires
little technical knowledge to generate a result. Our work
shows that a DSML can be used to represent and create web-
based educational games. It also demonstrates that given our
guided framework, this code generated is found to be valid,
correct, and executable in all cases.

References
[1] Sean M. Barclay, Meghan N. Jeffres, and Ragini Bhakta. 2011. Educa-

tional Card Games to Teach Pharmacotherapeutics in an Advanced
Pharmacy Practice Experience. American Journal of Pharmaceutical Ed-
ucation 75, 2 (March 2011), 7 pages. https://doi.org/10.5688/ajpe75233

[2] Francesco Bellotti, Michela Ott, Sylvester Arnab, Riccardo Berta, Sara
de Freitas, Kristian Kiili, and Alessandro De Gloria. 2011. Designing
serious games for education: from pedagogical principles to game
mechanisms. In European Conference on Games Based Learning. Aca-
demic Conferences Ltd, Athens, Greece, 26–34.

[3] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-
Driven Software Engineering in Practice. Morgan & Claypool, Williston,
VT, USA. https://doi.org/10.2200/S00751ED2V01Y201701SWE004

[4] Daniel D Burkey and Michael F Young. 2017. Work-in-Progress: A
’Cards Against Humanity’-style card game for increasing engineering
students’ awareness of ethical issues in the profession. In Annual

Conference & Exposition. ASEE, Columbus, Ohio, USA, 11 pages. https:
//doi.org/10.18260/1-2--29190

[5] H. Cho, J. Gray, and E. Syriani. 2012. Creating visual Domain-Specific
Modeling Languages from end-user demonstration. In 2012 4th In-
ternational Workshop on Modeling in Software Engineering (MISE).
IEEE, Zurich, Switzerland, 22–28. https://doi.org/10.1109/MISE.2012.
6226010

[6] Nicholas John DiGennaro. 2021. Intuitive Model Transformations:
A Guided Framework for Structural Modeling. Master’s thesis.
Miami University. http://rave.ohiolink.edu/etdc/view?acc_num=
miami1618913067752324

[7] Teo Eterovic, Enio Kaljic, Dzenana Donko, Adnan Salihbegovic, and
Samir Ribic. 2015. An Internet of Things visual domain specific
modeling language based on UML. In 2015 XXV International Con-
ference on Information, Communication and Automation Technolo-
gies (ICAT). IEEE, Sarajevo, Bosnia and Herzegovina, 1–5. https:
//doi.org/10.1109/ICAT.2015.7340537

[8] André WB Furtado and André LM Santos. 2006. Using domain-specific
modeling towards computer games development industrialization.
In The 6th OOPSLA workshop on domain-specific modeling (DSM06).
Citeseer, ACM, Portland, Oregon, USA, 1–14.

[9] Cynthia M. Odenweller, Christopher T. Hsu, and Stephen E. DiCarlo.
1998. Educational card games for understanding gastrointestinal physi-
ology. Advances in Physiology Education 20, 1 (December 1998), 7 pages.
https://doi.org/10.1152/advances.1998.275.6.S78

[10] Akhila Tirumalai Prasanna. 2012. A Domain Specific Modeling Lan-
guage for Specifying Educational Games. Master’s thesis. Vrije Univer-
siteit Brussel.

[11] Eric J. Rapos and Matthew Stephan. 2019. IML: Towards an Instruc-
tional Modeling Language. In MODELSWARD. SciTePress, Prague,
Czech Republic, 417–425. https://doi.org/10.5220/0007485204190427

[12] Niroshan Thillainathan, Holger Hoffmann, Eike M. Hirdes, and
Jan Marco Leimeister. 2013. Enabling Educators to Design Serious
Games – A Serious Game Logic and Structure Modeling Language.
In Scaling up Learning for Sustained Impact, Davinia Hernández-Leo,
Tobias Ley, Ralf Klamma, and Andreas Harrer (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 643–644. https://doi.org/10.1007/978-
3-642-40814-4_92

[13] Niroshan Thillainathan and Jan Marco Leimeister. 2014. Serious Game
Development for Educators - A Serious Game Logic and Structure
Modeling Language. In 6th International Conference on Education and
New Learning Technologies, Barcelona. IATED Academy, Barcelona,
Spain, 1196–1206. https://www.alexandria.unisg.ch/233433/

[14] Ana Syafiqah Zahari, Lukman Ab Rahim, Nur Aisyah Nurhadi, and
Mubeen Aslam. 2020. A Domain-Specific Modelling Language for
Adventure Educational Games and Flow Theory. International Journal
on Advanced Science, Engineering and Information Technology 10, 3
(2020), 999–1007. https://doi.org/10.18517/ijaseit.10.3.10173

https://doi.org/10.5688/ajpe75233
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.18260/1-2--29190
https://doi.org/10.18260/1-2--29190
https://doi.org/10.1109/MISE.2012.6226010
https://doi.org/10.1109/MISE.2012.6226010
http://rave.ohiolink.edu/etdc/view?acc_num=miami1618913067752324
http://rave.ohiolink.edu/etdc/view?acc_num=miami1618913067752324
https://doi.org/10.1109/ICAT.2015.7340537
https://doi.org/10.1109/ICAT.2015.7340537
https://doi.org/10.1152/advances.1998.275.6.S78
https://doi.org/10.5220/0007485204190427
https://doi.org/10.1007/978-3-642-40814-4_92
https://doi.org/10.1007/978-3-642-40814-4_92
https://www.alexandria.unisg.ch/233433/
https://doi.org/10.18517/ijaseit.10.3.10173

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Educational Game Design
	2.2 Related Work

	3 MOLEGA - Modeling Language for Educational Games
	3.1 Target Games
	3.2 MOLEGA Framework

	4 Domain Specific Modeling Language Design
	4.1 Metamodel Design
	4.2 Web-Based Model Editor

	5 Code Generation
	5.1 Generation Prerequisites
	5.2 Transformation Process

	6 Evaluation
	6.1 Experimental Design
	6.2 Results
	6.3 Discussion

	7 Conclusion
	7.1 Threats to Validity
	7.2 Future Work
	7.3 Summary

	References

