
MOLEGA: Modeling Language
for Educational Card Games

Kaylynn Borror
borrorkn@miamioh.edu

Computer Science & Software Engineering, Miami
University

Oxford, Ohio, USA

Eric J. Rapos
rapose@miamioh.edu

Computer Science & Software Engineering, Miami
University

Oxford, Ohio, USA

Abstract
Domain-specific modeling languages abstractly represent
domain knowledge in a way that users can more easily
understand the model content without technical expertise.
These languages can be created for any domain, provided
the necessary knowledge is available. This research uses
educational game design as a demonstration of the power
of domain-specific modeling. Games are useful tools in sup-
plementing the traditional education of students, however,
many educators often do not possess the design or technical
skills to develop a custom game for their own use. MOLEGA
(the Modeling Language for Educational Card Games) is a
domain-specific modeling language that provides a guided
model design environment for these users. Using MOLEGA,
users can create visual models, inspired by UML class dia-
grams, to represent their desired card game, based on two
selected variants. User models are then used to generate exe-
cutable source code for a mobile-compatible, browser-based
game that can be deployed on a server by following the pro-
vided instructions. MOLEGA is evaluated for validity and
correctness using a suite of example models.

CCS Concepts: • Software and its engineering→Devel-
opment frameworks and environments; Domain spe-
cific languages; Visual languages; • Applied comput-
ing→ Interactive learning environments.

Keywords: domain-specific modeling, domain-specific mod-
eling languages, game design, educational games, code gener-
ation, web applications, model-driven software engineering

1 Introduction
Model-driven software engineering (MDSE) uses models to
abstractly represent software systems throughout the engi-
neering process [3]. This approach to software design and
development provides an abstract representation of a com-
plex problem and solution. One of the major benefits pro-
vided through MDSE is the use of domain-specific modeling
languages (DSML). DSMLs abstractly represent software sys-
tems inside a domain in a way where non-technical users
can more easily understand the information the model is
presenting, but do not require advanced technical knowl-
edge of programming and engineering skills [5]. One specific

domain that has the ability to leverage the power of DSMLs
is that of educational game design.

Many people who want to use games to their benefit often
do not possess the design or implementation skills neces-
sary to write code for a game. Educators often fall into this
category, wanting to use games to enhance their students’
learning experiences but not being experienced developers
themselves. Having a way for an educator to create their
own classroom aids without the knowledge on how the aids
work would be extremely helpful for the educator. This envi-
ronment is a perfect demonstration of the power of DSMLs.
This paper presents MOLEGA (the Modeling Language

for Educational Card Games), a DSML that allows educators
and other users to create web-based card games for usage in
classrooms or similar settings. User models are created using
our MOLEGA web editor, which provides a guided and sup-
portive live-modeling environment that consistently ensures
that only valid models are created. From these models, fully
functional code for the game can be generated in a format
where it can be deployed in a web-based environment with
minimal technical knowledge required, following detailed
instructions. This model-to-text code generation provides
functional code without the user needing any understanding
of the model transformation process.
Domain-specific modeling has gained traction due to its

ability to facilitate the development of technical systems
by those with limited technical expertise. However, limited
research exists on the usage of DSMLs in educational games.
Specifically, no published research exists for the usage of
DSMLs for card-based educational games.
While there are previous instances of code generation

engines that transform from class-based languages, little
research exists for code generation frommodels toweb-based
languages, such as Javascript. This work aims to further
expand the application of DSMLs to a new target, both in
terms of domain and technical implementation.

While DSMLs aim to solve many issues surrounding a lack
of technical expertise, many languages are often still very
complex, leading to barriers in their adoption. To combat
this, we also believe that a DSML must provide its users with
adequate feedback and guidance during the modeling and
code generation processes such that they are able to con-
sistently generate functional code without having to worry
about minor semantic or syntactic details.



Kaylynn Borror and Eric J. Rapos

To demonstrate further applications of domain-specific
modeling, this paper poses two research questions:

• RQ1: Can domain-specific modeling be used to create
web-based educational card games?

• RQ2: Does a guided framework ensure the generation
of consistently correct executable game code?

In responding to these research questions, we also make the
following contributions:

• creation of a DSML for the definition of custom web-
based educational card games

• implementation of a model-to-text code generation
engine to produce executable web-based code

• implementation of a complete web-based framework
integrating the DSML and code generation processes,
applied to two example game types

• systematic evaluation of the code generation process
covering all aspects of the two example games

2 Background & Related Work
Given the nature of the venue, a base understanding of
DSMLs and language design is assumed. However, it is im-
portant to also understand the chosen application domain
of education games, as well as examine some of the closest
related works. This section will explore these topics in detail.

2.1 Educational Game Design
Educational games, or “edugames," are a type of game that
are used to aid in learning. While traditional games have
the goal of creating a solely enjoyable experience, edugames
have the primary goal of educating the players while also
offering an enjoyable experience as a secondary effect. To
serve their purpose, edugames must follow both traditional
game design principles and pedagogical principles. This can
be difficult, since game designers and education experts often
do not possess enough knowledge about each others’ domain
areas to work completely independently [2].
Card-based activities are a common educational tool, of-

ten seen in the form of memorizing flash cards. However,
card-based games have also been shown to have a positive
effect on learning. A 1998 study involved teaching students
about gastrointestinal physiology through the use of modi-
fied versions of Go Fish and Gin Rummy [9]. A similar study
in 2011 required pharmacy students to play games based on
the same two card games, three times each over a six-week
period. The pharmacy study found that the student partici-
pants had an overwhelmingly positive reception to the card
games and felt that it contributed to their learning [1]. More
recently, a custom variant of the popular game Cards Against
Humanity has been used in teaching engineering ethics [4].

2.2 Related Work
Work by Prasanna [10] and the DSML GLiSMo [12] [13] are
related to this work. For both works, DSMLs were created

to represent different aspects of game development, such as
choices that the player character can make at each stage of
the game, along with areas where the insertion of mathe-
matical problems is valid. Neither of these languages offer
any code generation capabilities in their published research.
Rather, they are meant to be used as visualization tools for
a user to follow along with in order to understand the pro-
gression of game events from beginning to end.

Zahari et al. proposed an extension to the GLiSMo DSML,
called FA-GLiSMo [14]. This extended DSML intends to rep-
resent educational adventure games while adopting elements
to encourage Flow Theory: a learning theory that describes
the state of complete engagement to an activity. FA-GLiSMo
intends to build upon GLiSMo’s drawbacks, aiming to em-
bed elements in the learning theory into educational games
represented by the language.
Eterovic et al. offer an abstract visualization of the con-

nections between Internet of Things (IoT) technologies [7].
This approach, based on UML diagrams, allows both tech-
nical and non-technical users to configure the plan of their
own IoT systems. This language was tested through the use
of human interaction with evaluations done on two types
of user groups: those who had UML experience and no IoT
experience and those who had experience in neither topic.
SharpLudus is a code generation environment intended

for generating action-adventure games through the use of
domain-specific languages (DSL) [8]. This environment’s
DSL, SLGML, is focused around defining the game world,
allowing the representation of elements like rooms and their
design, non-player characters and their actions, and specifi-
cations for when a player character lives or dies. SharpLudus
generates C# classes in response to receiving valid SLGML
diagrams.

MOLEGA differs from these related works in several ways.
Unlike previous works that define DSMLs for edugames,
this research not only defines a DSML for a different type
of edugame (i.e., card games), but also incorporates a code
generation algorithmwhich allows a user to use the DSML to
represent a game they want to exist, then to actually be able
to create it. Rather than allowing a user to create a game’s
objects and the flow of gameplay, the MOLEGA allows the
user to specify any type of game included in the DSML’s
metamodel, along with the ability to customize a variety of
features involved with the chosen game type.

3 MOLEGA - Modeling Language for
Educational Games

MOLEGA is a DSML that allows users to create models rep-
resenting educational card games. The MOLEGA web edi-
tor environment provides a completely guided model cre-
ation experience, which includes metamodel conformance
checking, dynamic type checking, the prevention of breaking
changes, and descriptive error messages. This section begins



MOLEGA: Modeling Language for Educational Card Games

by discussing MOLEGA’s target games and concludes with
a broader look at the language framework.

3.1 Target Games
In our initial implementation of MOLEGA, two different
game types were chosen to represent varied functionality:
Community Judge and Relations, discussed below.
The rules of Community Judge type games are almost

identical to those of Cards Against Humanity 1 or Apples
to Apples 2. During a game turn, one player is designated
the Judging player, drawing a question card which displays
a prompt, and all other players must play one response card
from their hand. After all other players have submitted their
card choices, the Judging player chooses which of the played
cards they feel best fits their card’s prompt. The player who
played the chosen card gains a point and the Judging player
title is moved to the next player. One round has passed when
all players have had a chance to judge. The player with the
most points at the end of a certain number of rounds, or the
player who reaches a certain score first, wins.
The rules of Relations games are a modified mixture of

Gin-Rummy and Go Fish. During a player’s turn, they can
choose cards in their hand that are related to one another.
They can do this as many times as they see fit during their
turn. The player can also click on their opponent’s area to
see their related card collections at any time. When they
have made all of their decisions, the current player can then
either pass the turn or discard a card in their hand while
passing their turn. This power then moves on to the next
player in line. The player with the most points at the end
of a certain number of rounds, or the player who reaches a
certain score first, wins.
Community Judge is a good choice for the first type of

game due to the popularity of nearly identical games like
Cards Against Humanity, a variant of which has been used
in teaching engineering ethics [4]. Additionally, this type
of game doesn’t have a strict rule structure, since the win-
ner of a turn is determined by player opinion and not an
in-game mechanic. This makes it easier to customize the con-
tent on both card decks. Relations, however, being a mixture
of games with stricter rule structures, needs a little more
attention to ensure that the game behaves correctly to player
input. This is done by making sure the related cards are listed
correctly in the card file. While the card file setup may be
a little more complex than Community Judge, Relations is
another valid target for MOLEGA. Previous literature shows
that when used in an educational context, modified versions
of Go Fish and Gin Rummy are beneficial for student learn-
ing [1] [9].

As it is not possible to create a DSML to model every pos-
sible educational card game variant in order to answer RQ1,

1https://cardsagainsthumanity.com/
2https://www.mattelgames.com/games/en-us/family/apples-apples

the selection of these two types of games, along with their in-
cluded variants, aims to provide a representative sample that
is sufficient in supporting the research question. By choosing
two significantly different game types with multiple varia-
tions, MOLEGA serves as a proof of concept realization and
demonstration of the power of domain-specific modeling to
represent educational games without the need to provide
full coverage. The contents of the game cards, regardless of
the game type, are provided by CSV files, which are filled in
by the user after generation.
The implementation of these target games is done in a

Node.js environment. To handle client-server interactions
simply and smoothly, the Socket.io library 3 is used. Node.js
was chosen for this reason. While Socket.io has been adapted
for other languages such as Java, C++, and Python, it was
originally written as a Javascript framework.

The games are coded in a way where both the mobile and
browser versions are readable and scaled to size. The differ-
ence between browser play and mobile play can be seen in
Figure 1, Figure 2a, and Figure 2b. Figure 1 displays the game
interface for a computer browser player, while Figures 2a
and 2b display the game interface for a mobile player, where
the first figure shows the game table and players while the
second is scrolled down on the mobile device, showing the
player’s hand of cards.

Figure 1. Browser Community Judge Play

To know what sort of customizable attributes that the
modeling language should include, these target games were
created first. By having example targets complete and work-
ing, it was possible to find the variation points between
different versions of the various games, which informed the
language design.

3.2 MOLEGA Framework
MOLEGA, (Modeling Language for Educational Card Games)
is a DSML and environment for the development of the two
target types of games. MOLEGA supports customization
3https://socket.io/

https://cardsagainsthumanity.com/
https://www.mattelgames.com/games/en-us/family/apples-apples
https://socket.io/


Kaylynn Borror and Eric J. Rapos

(a) Table View (b) Hand View

Figure 2. Mobile Version of Community Judge

of both game setup elements as well as game content and
several rules.

Beyond simply being an editor for MOLEGA models, the
framework provides guided model-time support to users to
help ensure the models they produce are valid and consis-
tent, thus ensuring only correct code is generated for use.
This support is provided in several ways. First, the editor
provides a constant conformance check to ensure that all
rules are being met for the game under development. Should
a user fail to meet any requirement of the meta-model, the
Meta-Model Conformance pane indicates this with a red X
(rather then the normal green check) and provides a detailed
message indicating how to resolve the issue. If a model con-
tains conformance errors, the code generation functionality
is disabled, preventing the environment from generating in-
valid code. Beyond this conformance checking, the MOLEGA
framework provides type checking to ensure valid values
are provided for attributes; not only does it check for type
matching, but it provides context-sensitive value checking
as well, such as ensuring the minimum number of players is
always less than or equal to the maximum number of players.
Finally, the editor ensures that any breaking change is pre-
vented, the error is identi�ed, and the change is rolled back
to the most recent stable state. This ensures that the model
is rarely in a state where incorrect code could be generated.

The web editor layout andFilemenu options are seen in
Figure 3. More details of the editor contained in the MOLEGA
framework are discussed in Section 4.2.

4 Domain Speci�c Modeling Language
Design

To answerRQ1, we de�ned a DSML to represent the web-
based educational card games discussed in Section 3.1. This
section describes the design and implementation of that lan-
guage, and is organized by explaining the metamodel design

Figure 3. MOLEGA Web Editor with File Menu Icon Ex-
panded (control panels typically appear to the right, as seen
in Figure 5)

for MOLEGA, followed by the web editor and environment
for MOLEGA and the design choices associated with it.

4.1 Metamodel Design

MOLEGA's metamodel was created using a modi�ed version
of UML class diagrams provided by the Instructional Mod-
eling Language (IML) [6, 11]. MOLEGA's metamodel was
designed to represent the two chosen target games, which
can be seen in Figure 4, and is discussed in further detail in
this section.

This metamodel's design assists in answeringRQ1. DSMLs
are meant to be useful in accurately representing domain
software in an abstract way. Attributes in the model should
encompass the domain it is representing. For MOLEGA to be
a useful DSML, attributes for the di�erent class types were
determined by �rst creating the example target games. Each
example game contains variation points at which customiza-
tion of the system can occur. These include colors of speci�c
in-game elements, the way that a player wins a game, and
several others. The classes and attributes of MOLEGA were
designed based on those variation points.

This metamodel design allows all customizable compo-
nents of the target to be represented in any model gener-
ated by a user. For either of the classes that inherit from
�Game�, the listed attributes (professor's name, number of
rooms, maximum number of players, etc.) can be customized
in order to meet the user's needs. Similarly, in the various
�Theme� classes, di�erent colors of di�erent pieces of the




	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Educational Game Design
	2.2 Related Work

	3 MOLEGA - Modeling Language for Educational Games
	3.1 Target Games
	3.2 MOLEGA Framework

	4 Domain Specific Modeling Language Design
	4.1 Metamodel Design
	4.2 Web-Based Model Editor

	5 Code Generation
	5.1 Generation Prerequisites
	5.2 Transformation Process

	6 Evaluation
	6.1 Experimental Design
	6.2 Results
	6.3 Discussion

	7 Conclusion
	7.1 Threats to Validity
	7.2 Future Work
	7.3 Summary

	References

