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Abstract—Program understanding plays a pivotal role in soft-
ware maintenance and evolution: a deep understanding of code
is the stepping stone for most software-related activities, such as
bug fixing or testing. Being able to measure the understandability
of a piece of code might help in estimating the effort required for
a maintenance activity, in comparing the quality of alternative
implementations, or even in predicting bugs. Unfortunately,
there are no existing metrics specifically designed to assess the
understandability of a given code snippet.

In this paper, we perform a first step in this direction, by
studying the extent to which several types of metrics computed
on code, documentation, and developers correlate with code
understandability. To perform such an investigation we ran a
study with 46 participants who were asked to understand eight
code snippets each. We collected a total of 324 evaluations aiming
at assessing the perceived understandability, the actual level of
understanding, and the time needed to understand a code snippet.

Our results demonstrate that none of the (existing and new)
metrics we considered is able to capture code understandability,
not even the ones assumed to assess quality attributes strongly
related with it, such as code readability and complexity.

Index Terms—Software metrics, Code understandability, Em-
pirical study, Negative result

I. INTRODUCTION

Code understanding is an important foundation to any code-
related activity. Developing new features, fixing bugs, or
refactoring code requires a deep understanding of the involved
code components and of their relationships. Unsurprisingly,
recent studies showed that developers spend most of their time
(∼70%) understanding code [1].

While the importance of code understandability is undis-
puted for maintenance-related activities [2], [3], [4], [5], [6],
[7], there is still a lack of metrics to objectively assess
the understandability of a given piece of code. Indeed, our
knowledge of factors affecting (positively or negatively) code
understandability is basically tied to common beliefs or is
focused on the cognitive process adopted when understanding
code [8], [9]. For example, we commonly assume that code
complexity has a direct impact on developers’ ability to
understand the code, but we do not have strong empirical
evidence supporting such a belief yet.

Another aspect possibly related to the understandability of
a piece of code is represented by its readability. In the last
years, researchers have proposed several metrics and models
for assessing code readability [10], [11], [12], [13], [14].
These metrics and models are generally evaluated by assessing

their correlation with the readability perceived by developers.
This typically means that the developers participating in the
evaluation are just asked to read the code and assess its
readability on a given scale (e.g., from 1—low to 5—high
readability). However, the perceived readability is something
different from the actual understandability of the code; a
developer could find a piece of code readable, but still difficult
to understand, for example, due to unknown APIs used.

Let us consider the code fragment listed below:
AsyncHttpClient client=new AsyncHttpClient ();
String cookies=CookieManager.getInstance ().getCookie(url);
Log.e(TAG , cookies);
client.addHeader(SM.COOKIE , cookies);

All readability metrics/models existing in the literature [10],
[11], [12], [13], [14] would consider this snippet of code as
highly readable, since it is very short, it has a low complexity,
and uses meaningful and intuitive identifiers. Nevertheless, this
snippet of code is not necessarily easy to understand for any
given developer, because the used APIs could be unknown
to her and even poorly documented. In other words, even if
a developer can understand that getCookie(url) returns a
cookie, she may not understand all the consequences of this
call if she does not know the specifications behind that API.

While we have possible proxies for code understandabil-
ity, such as code complexity and readability, we (i) do not
know whether these proxies actually correlate with the effort
required to understand a piece of code, and (ii) do not have a
metric able to provide an estimation for code understandability.
Previous attempts to define a code understandability model
[4], [15], [6] have not been empirically evaluated, consider
understandability as a factor in a quality model [2], [16], or
measure understandability at the level of a whole system [17].

Having a metric to estimate the effort required to understand
a piece of code would have a strong impact on several software
engineering tasks. For example, such a metric would be useful
to (i) improve the estimation of the time needed to fix a
bug (the lower the understandability, the higher the time to
fix the bug); (ii) create search-based refactoring recommender
systems using code understandability as a fitness function; or
(iii) assess the quality of code changes during code reviews.

In this paper, we make the first step towards the definition
of a metric able to capture the understandability of a given
piece of code by investigating to what extent a number
of different (existing and new) metrics correlate with code
understandability.



We consider three types of metrics:
1) Code-related metrics. We consider 105 metrics character-

izing the code to be understood: classic code metrics such
as LOC and cyclomatic complexity, as well as metrics
used to assess the readability of a code component, such
as text coherence [14] and the code indentation [10];

2) Documentation-related metrics. The availability of doc-
umentation can clearly impact the understandability of
a given piece of code. For this reason, we consider 11
documentation-related metrics (e.g., the availability of
external documentation for the given code). Nine of them
are introduced in this paper.

3) Developer-related metrics. We consider five metrics re-
lated to the developer’s experience. While developer-
related metrics could not be used to define an objective
measure for code understandability, they are still useful
in our study to assess to what extent the developer expe-
rience and background play a role during comprehension.

We conducted a study involving 46 participants to assess
the correlation of the aforementioned 121 (105 code-related
+ 11 documentation-related + 5 developer-related) metrics
with the understandability of code snippets. Participants were
required to understand eight code snippets each, for a total
of 324 data points. We adopted the following experimental
design to consider both the perceived and the actual code
understandability. We asked participants to carefully read and
to fully understand each snippet. Participants could, at any
moment, select the option “I understood the snippet” or “I
cannot understand the snippet”. This provided us with a first
classification of snippets that are perceived by the participants
as either “understandable” or “not understandable”. Also, since
we monitored the time spent before selecting one of the two
options, we can also measure the understandability effort (i.e.,
the time required to understand a code snippet). Finally, when
the participants clicked on “I understood the snippet”, we
verified their actual level of understanding by asking questions
about the code snippet. The collected dataset, as opposed to
the ones used for evaluating code readability metrics (see
[10], [14]), provides indications not only about the perceived
understandability, but also about the actual understandability.

Our extensive statistical analysis provided us with what
can be defined as a negative empirical result: none of the
considered metrics exhibit a significant correlation with the
understandability of code snippets. This holds for both the
perceived and the actual understandability. This result was
quite surprising for us, especially considering that several
metrics (e.g., code complexity and readability) are supposed
to influence the understandability of code.

II. BACKGROUND & RELATED WORK

In this section, we describe metrics and models that have
been proposed to measure code readability. All these metrics
have been included in our study. Afterwards, we briefly
describe related work presenting metrics for measuring un-
derstandability (at system level) as a single quality attribute
and as part of a quality model.

A. Code Readability

Identifiers and comments play a crucial role in program
comprehension, since developers express domain knowledge
through the names that they assign to the code entities at
different levels (i.e., packages, classes, methods, variables)
[18], [19], [20], [21], [22]. Thus, source code lexicon impacts
the psychological complexity of a program [14], [23]. Another
aspect that also contributes to the readability (and potentially
understandability) of source code are structural aspects such as
indentation, code entities length [10], [11], and visual/spatial
aspects such as syntax highlighting, code formatting, and
visual areas covered by code entities [12].

All the aforementioned aspects have been used as features
in binary classifiers able to predict the readability of code
snippets [10], [11], [12], [13], [14]. In the model by Buse and
Weimer [10], source code structural aspects (e.g., number of
branches, loops, operators, blank lines, comments) represent
the underlying features in the classifier. The model was trained
a-priori on 100 small snippets; the snippets were tagged man-
ually as readable or non-readable by 120 human annotators.
The reported results provide evidence that readability can be
estimated automatically.

Posnett et al. [11] proposed a model based on a reduced set
of the features introduced by Buse and Weimer. An empirical
evaluation conducted on the same dataset used by Buse and
Weimer [10] indicated that the model by Posnett et al. is more
accurate than the one by Buse and Weimer.

Dorn introduced a readability model, which relies on a
larger set of features grouped in four categories: visual, spatial,
alignment, and linguistic [12]. This larger set of features
highlights the fact that structural aspects are not the only
ones that should be considered for code readability; aspects
representing and modeling how the code is read on the screen,
such as syntax highlighting, variable naming standards, and
operators alignment, should be also considered. Dorn trained
and validated the model on a new dataset, including programs
in Java, Python and CUDA, for a total of 360 snippets. Such
a model achieved a higher accuracy as compared to the one
by Buse and Weimer.

Scalabrino et al. [14] proposed and evaluated a set of
features based entirely on source code lexicon analysis (e.g.,
consistency between source code and comments, specificity of
the identifiers, textual coherence, comments readability). The
model was evaluated on the two datasets previously introduced
by Buse and Weimer [10] and Dorn [12] and on a new
dataset, composed by 200 Java snippets, manually evaluated
by nine developers. The results indicated that combining the
features (i.e., structural+textual) improves the accuracy of code
readability models.

B. Software/Code Understandability

While readable code might directly impact program compre-
hension, code readability metrics are not sufficient to measure
to what extent the code allows developers to understand its
purpose, relationships between code entities, and the latent
semantics at the low-level (e.g., statements, beacons, motifs)



and high-level structures (e.g., packages, classes). Program
understanding is a non-trivial mental process that requires
building high-level abstractions from code statements or vi-
sualizations/models [9], [4]. There have been several metrics
designed to evaluate software understandability by focusing
on complexity as well as source-level metrics.

Lin et al. [4] proposed a model for assessing understand-
ability by building an understandability matrix from fuzzy
maximum membership estimation for population of fog index,
comment ratio, the number of components, CFS, Halstead
Complexity, and DMSP. The authors then used PCA and factor
analysis to get the weights for the column vectors, which can
be multiplied by the matrix to get the Synthesis Vector of
Understandability. Finally, the understandability is calculated
by using the fuzzy integral. The authors did not empirically
evaluate the proposed metric.

Misra and Akman [24] performed a comparative study
between existing cognitive complexity measures and their
proposed measure: cognitive weight complexity measure
(CWCM), which assigns weights to software components by
analyzing their control structures. The authors performed a
theoretical validation of these metrics based on the properties
proposed by Weyuker [25]. They found that only one metric,
Cognitive Information Complexity Measure (CICM), satisfied
all nine properties, while the others satisfied seven of the nine.

Thongmak et al. [3] considered aspect-oriented software
dependence graphs to assess understandability of aspect-
oriented software, while Srinivasulu et al. [6] used rough sets
and rough entropy (to filter outliers) when considering the
following metrics: fog index, comment ration, the number of
components, CFS, Halstead Complexity, and DMSC. These
metrics are computed at system level for nine projects, and
subsequently the rough entropy outlier factor was calculated
for the metrics to identify the outliers, which correspond to
either highly understandable or not understandable software
based on the metric values.

Capiluppi et al. [17] proposed a measure of understand-
ability that can be evaluated in an automated manner. The
proposed measure considers: (i) the percentage of micro-
modules (i.e., the numbers of files) that are within the macro-
modules (i.e., the directories), and (ii) the relative size of the
micro-modules. The authors calculated the proposed measure
on the history of 19 open source projects, finding that un-
derstandability typically increased during the life-cycle of the
systems. Yet, no evaluation is provided for such a measure.

Understandability has also been a factor in quality models
to assess software maintainability. Aggarwal et al. [2] inves-
tigated the maintainability of software and proposed a fuzzy
model, which is composed of three parts: (i) readability of
code, (ii) documentation quality, and (iii) understandability
of the software. To quantify understandability, the authors
utilize a prior work that defines language of software as
the symbols used, excluding reserved words. The authors
constructed rules based on the ranges of the three factors to
determine maintainability.

Similarly, Chen et al. [7] investigated the COCOMO II
Software Understandability factors by conducting a study with
six graduate students asked to accomplish 44 maintenance
tasks, and found that higher quality structure, higher quality
organization, and more self-descriptive code were all corre-
lated with less effort spent on the tasks, which leads to high
maintainability.

Bansiya and Davis [26] proposed a model where metrics
are related to several quality attributes, including understand-
ability. In terms of understandability, the model considers
encapsulation and cohesion to have positive influences, while
abstraction, coupling, polymorphism, complexity, and design
size have a negative influence. The authors validated the model
by analyzing several versions of two applications and found
that understandability decreases as a system evolves with many
new features. Additionally, 13 evaluators analyzed 14 versions
of a project and the authors found a correlation between
the evaluators’ overall assessment of quality and the models
assessment for 11 out of 13 evaluators.

It is worth noting that we do not consider the above
discussed understandability metrics [4], [24], [3], [6], [17],
[16], [26] in our study since they are defined at system-
level (i.e., they provide an overall indication of the system
understandability), while we are interested in studying whether
it is possible to measure the understandability of a given code
snippet, as already done in the literature for code readability.
Instead, we included in our study the metrics used by Kasto
and Whalley [27] to study the understandability of code
snippets in an educational context. Specifically, Kasto and
Whalley analyzed the performance of 93 students in their
final examination for the Java programming course and they
correlated their results with five metrics.

Several studies have explored software understandability
and program comprehension with either students or practition-
ers. Shima et al. considered the understandability of a software
system by assessing the probability that a system can be
correctly reconstructed from its components [28]. The authors
asked eight students to reconstruct a system and the results
suggest that faults tend to occur in hard to understand files or
very simple files. Roehm et al. performed an observational
study with 28 developers to identify the steps developers
perform when understanding software and the artifacts they
investigate [5]. The authors found that developers are more in-
clined towards relying upon source code as well as discussing
with colleagues over utilizing the documentation. The authors
also identified some behaviors that improve comprehension,
such as consistent naming conventions or meaningful names.

Understandability has been mostly analyzed from the per-
spective of (i) the quality attribute at the software level,
i.e., understandability as the “The capability of the software
product to enable the user to understand whether the software
is suitable, and how it can be used for particular tasks and
conditions of use" [29]; and (ii) the theories, challenges, and
models for program understanding at cognitive levels [9], [8].
However, as of today, we still lack models for assessing code
understandability at snippet-level, similarly to code readability.



The only work we found that relates to a code understandabil-
ity model is based on complexity and size source code level
metrics [4], [15].

III. CANDIDATE PREDICTORS FOR CODE
UNDERSTANDABILITY

Understandability is a multifaceted property of source code
and, as well as readability, is subjective in nature. In readabil-
ity, the subjectivity is represented by personal taste and habits,
while in understandability it lies in the previous knowledge of
a developer and in her mental models [8]. Consider a method
of an Android activity in a mobile app; its understandability
might be high for an Android developer, while it could be
low for a Java developer with no experience in Android. In
this section, we briefly discuss the 121 metrics considered
in our study aimed at assessing their ability to capture the
understandability of a given piece of code. Table I shows the
complete list of metrics: rows contain the basic metrics and
columns indicate how the metrics are aggregated (e.g., the
Identifiers length for a given code snippet is computed, as
suggested by previous work [10], as the average and as the
maximum length of the identifiers used in the snippet). We
report in boldface the new metrics introduced in this study. In
the following subsections, we discuss the considered metrics
grouped by their type.

TABLE I
CANDIDATE PREDICTORS FOR CODE UNDERSTANDABILITY.

Metric Non-aggreg. Min Avg Max DFT Visual Area

C
od

e

Cyclomatic comp. [27]
#nested blocks [27]
#parameters [27]
#statements [27]
#assignments [10] [12]
#blank lines [10]
#characters [10]
#commas [10] [12]
#comments [10] [12] [12] [12]
#comparisons [10] [12]
#conditionals [10] [12]
#identifiers [27] [10] [10] [12] [12] [12]
#keywords [10] [10] [12] [12] [12]
#literals [12] [12]
#loops [10] [12]
#numbers [10] [10] [12] [12] [12]
#operators [10] [12] [12] [12]
#parenthesis [10] [12]
#periods [10] [12]
#spaces [10] [12]
#strings [12] [12]
#words [10]
Indentation length [10] [10] [12]
Identifiers length [10] [10]
Line length [10] [10] [12]
#aligned blocks [12]
Ext. of alig. blocks [12]
Entropy [11]
LOC [11]
Volume [11]
NMI [14] [14] [14]
NM [14] [14]
ITID [14] [14][12]
TC [14] [14] [14]
Readability [14]
IMSQ [new] [new] [new]

D
oc

s

CR [14]
CIC [14] [14]
CICsyn [14] [14]
MIDQ [new] [new] [new]
AEDQ [new] [new] [new]

D
ev

s EAP [new] [new] [new]
PEgen [new]
PEspec [new]

A. Code-related metrics

Most of the metrics considered in our study assess source
code properties. We include the five metrics used by Kasto
and Whalley [27]: cyclomatic complexity [30], which estimates
the number of linear independent paths of the snippet average
number of nested blocks, which measures the average code-
block nesting in the snippet, number of parameters, number of
statements and number of operands, i.e., number of identifiers.

We also include in this category all the code-related read-
ability metrics defined in the literature [10], [11], [12], [14].
These include the ones by Buse and Weimer [10], assessing
properties for a single line of code (e.g., number of identifiers
or line length) and then aggregated (with the maximum and/or
the average) to work at the level of “code snippet”.

Lines of code (LOC), token entropy and Halstead’s volume
are used by Posnett et al. [11] in the context of readability
prediction. Dorn [12] presents a variation to the basic metrics
introduced by Buse and Weimer [10], measuring the band-
width of the Discrete Fourier Transform (DFT) of the metrics,
the absolute and the relative area of characters belonging
to different token categories (e.g., identifiers, keywords or
comments), the alignment of characters through different lines,
and the number of identifiers containing words belonging to an
English dictionary. Note that the area-related metrics defined
by Dorn are computed both in an absolute way (e.g., total area
of comments) and in a relative way (e.g., area of comments
divided by area of strings). These variants are not reported
in Table I due to space constraints, but are considered in our
study and listed in our replication package [31].

Scalabrino et al. [14] define Narrow Meaning Identifiers
(NMI), Number of Meanings (NM), Identifiers Terms In Dic-
tionary (ITID) and Textual Coherence (TC) to capture the
readability of a code snippet. Such metrics are computed
line-by-line (ITID), identifier-by-identifier (NMI and NM)
or block-by-block (TC); the authors aggregate the measures
using minimum, average and maximum, in order to have a
single measure for the snippet. We also use code readability,
as defined by Scalabrino et al. [14], as a separate metric,
combining together the previously listed metrics. We followed
the steps described by Scalabrino et al. to define the readability
model by using a logistic classifier that we train on the 420
Java snippets available in the literature [10], [12], [14].

We also introduce a new code-related metric, the Invoked
Methods Signature Quality (IMSQ), which measures the qual-
ity of the signature of the internal methods invoked by a given
code snippet s (i.e., methods belonging to the same system of
s) in terms of readability and representativeness. We define the
Method Signature Quality (MSQ) of an invoked method m as:

MSQ(m) =
1

|IS (m)|
∑

id∈IS(m)

IQ(id)

where IS(m) is the set of identifiers used in the m’s signature
(i.e., method name and parameters) and IQ(id) is defined as:

IQ(id) =

{
1
2 (Rd(id) + Rp(id)), id is a method name
Rd(id), id is a parameter name



IQ(id) captures the quality of an identifier in terms of
its readability (Rd) and its representativeness (Rp). The idea
behind the readability is that an identifier should be composed
of a (possibly small) set of meaningful words. To measure Rd
for an identifier (id), we (i) split id into the words composing
it, (ii) expand each word to bring it in its original form
(e.g., ptr → pointer), (iii) create a new identifier idexp

composed by the expanded words separated by a “_”, and (iv)
measure the Levenshtein distance between id and idexp. The
Levenshtein distance between two strings a and b measures
the minimum number of single-character changes needed to
transform a into b. The conjecture behind IQ(id) is that
the higher the Levenshtein distance between id and idexp,
the higher the mental effort required for the developer to
understand the meaning of the identifier by mentally splitting
and expanding it during program comprehension. Note also
that we separate the expanded terms in idexp by using “_”
in order to penalize, by increasing the Levenshtein distance,
identifiers composed by several words. For example, the
identifier printOnStdOut is first split into print, on, std,
out; then, each word is expanded, which has no effect on
the first two words, but expands std into standard and out

into output. Therefore, printOnStdOut is transformed in
print_on_standard_output.

To have Rd(id) defined in [0, 1], we normalize the Leven-
shtein distance (L) between id and idexp as follows:

Rd(id) = 1− L(id , idexp)

max(|id |, |idexp|)

where max(|id |, |idexp|) represents the longest identifier
among the two. When the distance equals zero, the readability
of the identifier equals one, indicating no need for expansion/s-
plitting (i.e., id is composed by a single expanded word).

Note that in the implementation of Rd(id), we used a semi-
automatic approach to split/expand identifiers. We first used
a naive automatic splitting technique, based on camel case
and underscores; then, we automatically checked the presence
of each resulting word in an English dictionary. If the word
was not found, we manually expanded/further split the specific
word. For example, for the word “cmdline” there would not be
automatic split. Since the word “cmdline” does not exist in the
dictionary, we manually convert it to “command” and “line”.
We save all the manual substitutions in order to minimize
the human effort. In the literature, there are many automatic
approaches for identifier splitting/expansion, but we preferred
to implement a simpler and more effective strategy at this
stage, since the number of identifiers to split/expand was
limited and our goal was to assess the correlation of the defined
metrics with the understandability effort. Thus, we wanted to
be sure to avoid introducing imprecision while computing the
metrics.

When dealing with the identifier used to name a method,
we also verify whether it is representative of what the method
does (Rp). We compute the textual overlap between the terms
used in the identifier and in the method body. We tokenize
the method body to define its dictionary. Then, we count the

number of times each word from the identifier (expanded
or not) is contained in the dictionary extracted from the
method body. We consider only names and verbs from the
identifiers, ignoring other parts of speech such as conjunctions,
since they do not carry semantic information. Following the
printOnStdOut example, we check whether the method body
contains the words print, standard, std, output, and out.
We measure the representativeness as the ratio between the
number of words from the identifier (i.e., method name)
contained in the method body, and the total number of words
in the identifier. If all the words from the identifier are used in
m’s body, we assume that the method name is representative of
m and thus, should ease the understanding of methods invoking
m. If, instead, words are not found in the method body, this
could hinder the understandability of the methods invoking m.

In our study, we consider the minimum, the average, and the
maximum values of the MSQ metric for a given code snippet
(e.g., the average MSQ of all methods invoked in the code
snippet).

B. Documentation-related metrics

Scalabrino et al. [14] introduced three metrics to capture the
quality of the internal documentation of a snippet: Comments
Readability (CR) measures the readability of the comments in
a snippet using the Flesch reading-ease test [32]; Comments
and Identifiers Consistency (CIC) measures the consistency
between comments and code; and CICsyn, a variant of CIC,
which takes synonyms into account.

We also introduce two new metrics aimed at capturing the
quality of both the internal (MIDQ) and external (AEDQ)
documentation available for code components used in a given
snippet. The Methods Internal Documentation Quality (MIDQ)
for a snippet s acts as a proxy for the internal documentation
(i.e., Javadoc) available for the internal methods (the ones
belonging to the same project as s) invoked in s. Given m
an internal invoked method, we compute MIDQ(m) using a
variation of the approach proposed by Schreck et al. [33]:

MIDQ(m) =
1

2
(DIR(m) + readabilityD(m))

where DIR(m) is the Documented Items Ratio computed as the
number of documented items in m divided by the number of
documentable items in m. We consider as documentable items
for m (i) its parameters, (ii) the exceptions it throws, and (iii)
its return value. Such items are considered as documented if
there is an explicit reference to them in the Javadoc through
the tags @param, @throws and @returns. readabilityD(m)
represents, instead, the readability of the Javadoc comments
assessed using the Flesch reading-ease test [32]. The higher
MIDQ the higher the internal documentation quality for m. We
consider the minimum, the average, and the maximum values
of the MSQ metric for a given code snippet.

Concerning the API External Documentation Quality
(AEDQ), it tries to capture the amount of information about
APIs used in the given snippet s that can be acquired from
external sources of documentation, such as Q&A websites.



The conjecture is that if external documentation is available, it
is more likely that developers are able to understand the usage
of an API in a code snippet s. We compute the availability of
external documentation for each external class c used in s
via the AEDQ(c) metric. First, we identify all Stack Overflow
discussions related to c by running the following query:

“title:‘how to’ < c > hasaccepted:yes [java]”
In other words, we select all Stack Overflow discussions that
(i) contain “how to” and the class name in the title, (ii) have an
accepted answer, and (iii) concern Java (since our study has
been performed on Java snippets). Then, we sum the votes
assigned by the Stack Overflow users to the question in each
retrieved discussion, in order to have a quantitative information
about the interest of the developers’ community in such a class.
We assume that higher interest in a given API class implies
a higher availability of external sources of information (e.g.,
discussions, code examples, etc.). We consider in our study
the minimum, the average, and the maximum values of the
AEDQ metric for the external classes used in s.

C. Developer-related metrics

Since understandability is a very subjective feature of code,
we introduced three developer-related metrics. We measure the
programming experience of the developer who is required to
understand a snippet (PEgen and PEspec) and the popularity
of the API used in the snippet (EAP).

The common wisdom is that the higher the programming
experience of developers, the higher their capability of under-
standing code. PEgen measures the programming experience
(in years) of a developer in general (i.e., in any programming
language). PEspec assesses instead the programming experi-
ence (in years) of a developer in the programming language in
which a given snippet s is implemented. The higher PEspec, the
higher the developer’s knowledge about the libraries available
for such a programming language.

With External API Popularity (EAP), we aim at capturing
the popularity of the external APIs used in a given snippet.
The assumption is that the lower the popularity, the lower
the probability that a typical developer knows the API. If the
developer is not aware of the APIs used in a snippet, it is likely
that she has to look for its documentation or to inspect its
source code, thus spending more effort in code understanding.

We rely on an external base of Java classes E to estimate
the popularity of an external class. We chose as E a 10%
random sample of classes from Java/Android projects hosted
on GitHub in 2016, totaling ∼2M classes from ∼57K Java
projects. We used Google BigQuery to extract all the imports
of all the classes belonging to such projects using a regular
expression. Then, we counted the number of times each class
imported in E occurred in the import statements. Note that
in Java it is possible to import entire packages (e.g., import
java.util.∗). In this case, it is difficult to identify the actual
classes imported from the package. For this reason, we applied
the following strategy. Let us assume that a class, Foo, is
imported only once with the statement import bar.Foo, but
it is part of a quite popular package, bar, that is imported

TABLE II
SYSTEMS USED IN OUR STUDY

System Java KLOC Category Description

ANTLR 178 Desktop Lexer-parser
Car-report 45 Mobile Car costs monitoring
Hibernate 948 Framework ORM framework
Jenkins 231 Web Continuous integration
K9 mail 121 Mobile Mail client
MyExpenses 101 Mobile Budget monitoring
OpenCMS 1059 Web Content Management System
Phoenix 352 Framework Relational database engine
Spring 197 Framework Generic application framework
Weka 657 Desktop Machine-learning toolkit

100 times in E through the statement import bar.∗. The
class Foo2, belonging to the same package, is imported 99
times with the statement import bar.Foo2. In this case, we
increase the number of occurrences of classes belonging to
imported package in a proportional way. In the presented
example, we add 1 to the number of Foo’s imports, and 99 to
the number of Foo2 imports. We found that imports of entire
packages represent only 2.6% of all the imports and, therefore,
their impact is very low. EAP(c) is defined as the number of
c imports normalized over the number of imports of cmax,
where cmax is the most imported class we found in E (i.e.,
java.util.List).

IV. EMPIRICAL STUDY DESIGN

The goal of our study is to assess the extent to which the
considered 121 metrics correlate with code understandabil-
ity. The perspective is of researchers interested in analyzing
whether code-related, documentation-related, and developer-
related metrics can be used to assess the understandability
level of a given piece of code. This study aims at answering
the following major research question:

What is the correlation between the 121 considered metrics
and the understandability level of a given developer for a

specific code snippet?

Given the wide and heterogeneous set of considered metrics,
answering this research question would allow us and, more
in general, the research community to understand how far we
are from defining a set of metrics capable of automatically
and objectively assessing code understandability.

A. Data collection

The context of the study consists of 50 Java/Android meth-
ods extracted from ten popular systems listed in Table II
(five methods from each system). We first extracted all the
methods having 50±20 ELOCs (i.e., Effective Lines Of Code,
excluding blank and comment lines) from the systems. The
choice of the methods’ size (i.e., 50± 20 ELOCs) was driven
by the decision of excluding methods that are too trivial or
too complex to understand.



Afterwards, we computed all the metrics described in
Section III for the selected methods1. Then, we used a
greedy algorithm for center selection [34] to select the 50
most representative methods based on the defined metrics.
Given a set of candidate methods M and a set of already
selected centers C, such algorithm chooses, in each iteration,
argmaxm∈M dist(C,m), i.e., the candidate method which is
the farthest possible (in terms of considered metrics) from the
already selected centers. The first center is randomly selected.
In order to select exactly five snippets from each system, we
used the set of candidate methods from a specific system as
M until the five methods for such a system were selected;
then, we changed M with the set of candidate methods from
another system, and so on, until |C| = 50. Note that (i) we
did not empty the C set when changing the candidate methods
(i.e., when moving from one system to another) to always keep
track of the methods selected up to that moment, thus avoiding
the risk of adding to C methods similar to the ones already
in C; (ii) we did not run the algorithm on the union of all
candidate methods to ensure the selection of five methods per
system (thus increasing the heterogeneity of the final sample).

After having selected the 50 methods and computed the
values of the metrics of interest for each of these 50 methods,
we needed to define a ground-truth reporting the understand-
ability of each method. To this aim, we invited 46 Java
developers and CS students to participate in a survey where
they were required to understand the selected methods. The
survey was implemented in a Web application and featured
the following steps. First, we collected demographic data
about participants: (i) years of experience in programming and
more specifically in Java, and (ii) current position (e.g., CS
student, developer etc.). This information was used in part to
compute the developer-related metrics. After this preliminary
step, each participant was required to understand a subset
of eight methods randomly selected from the 50 methods.
The Web application was designed to automatically balance
the number of evaluations for each of the 50 methods (i.e.,
the number of participants understanding each method was
roughly the same). In total, we collected 324 evaluations across
the 50 methods (∼6.5 evaluations per method on average),
since not all participants completed the survey.

The eight methods were presented individually (i.e., each
method in a different page) to participants, and the Web
application allowed navigation of the method and access to
the methods/classes invoked/used by it. Also, participants were
allowed to browse the Web to collect information about types,
APIs, data structures, etc. used in the method. This was done
to simulate the typical understanding process performed by
developers. We asked participants to carefully read and fully
understand each method. Participants could, at any moment,
click on the button “I understood the method” or the button
“I cannot understand the method”. In both cases, the Web
application stored the time spent, in seconds, by the developer

1Excluding the “Developer programming experience” and the “Developer
Java experience”.

for the method’s understanding before clicking on one of
the two buttons. If the participant clicked on “I understood
the method”, the method was hidden and she was required
to answer three verification questions about the method she
just inspected. The provided answers were stored for future
analysis. An example of verification question is: “What does
the invoked method X do?”. To answer such a question, the
participant should have understood also all the consequences
of invoking a specific external method.

B. Analysis Method

In the context of our study, we measure the understandabil-
ity level of a given piece of code from different perspectives
and correlate it with 121 considered metrics. We defined the
following four different independent variables.

Perceived Binary Understandability (PBU). This binary
metric gets value 0 if the participant clicked on the “I cannot
understand the method” button, otherwise (i.e., the participant
clicked on “I understood the method”) it gets value 1. This
metric simply aims at discriminating between understandable
vs. non-understandable methods as perceived by participants.

Time Needed for Perceived Understandability (TNPU).
Measured as time, in seconds, spent by the participant while
inspecting the method before clicking on “I understood the
method”. This metric cannot be computed when the participant
clicked on “I cannot understand the method”.

Actual Understandability (AU). It gets value 0 if the
participant clicked on the “I cannot understand the method”
button. Otherwise, it is computed as the percentage of correct
answers the participant provided to the three verification
questions. The metric is defined in the range [0, 1], where
1 indicates high understandability.

Timed Actual Understandability (TAU). It gets value 0 if
the participant clicked on the “I cannot understand the method”
button. Otherwise, it is computed as:

TAU = AU

(
1− TNPUno

maxTNPUno

)
where AU is the percentage of correct answers, TNPU is
the time needed to understand the method and TNPUno is
a modified TNPU where outliers (detected using the Tukey’s
test [35], with k = 3) are substituted with the maximum
value of TPNU, which is not an outlier. The higher AU,
the higher TAU, while the higher TNPU, the lower TAU.
Also, TAU is defined in [0, 1]. We considered the relative
time ( TNPUno

maxTNPUno
) instead of the absolute time so that TAU

gives the same importance to both the correctness achieved
(AU) and the time needed (TNPU). We removed outliers from
TNPU because the maximum value of such a variable is 1,649
seconds, much greater than the third quartile (171 seconds).
Using such a value as the maximum would have flattened
down all the relative times.

We computed these four variables for each of the 324
evaluations performed by participants (i.e., for each method
each participant tried to understand). Before calculating the
correlation between each of the 121 metrics described in



Section III and PBU, TNPU, AU, and TAU, we excluded 2
of the 121 considered metrics (i.e., NMImin and ITIDmin),
because the value of such metrics was 0 for all the snippets
taken into account. Then, we verified which metrics strongly
correlate among the 121. This was done to exclude from our
analysis redundant metrics capturing the same information
in different ways. We compute the Kendall rank correlation
coefficient (i.e., Kendall’s τ ) [36] to determine whether there
are pairs exhibiting a strong correlation. We adopted the
Kendall’s τ , since it does not assume the data to be normally
distributed nor the existence of a straight linear relationship
between the analyzed pairs of metrics. Cohen [37] provided
a set of guidelines for the interpretation of the correlation
coefficient. It is assumed that there is no correlation when
0 ≤ |τ | < 0.1, small correlation when 0.1 ≤ |τ | < 0.3,
medium correlation when 0.3 ≤ |τ | < 0.7, and strong
correlation when 0.7 ≤ |τ | ≤ 1.

For each pair of metrics exhibiting a strong correlation
(i.e., with a Kendall’s |τ | ≥ 0.7), we excluded the ones
which presented the highest number of missing values2 or, if
equals, one at random. This allowed us to reduce the number
of investigated metrics from 121 to 74. Note that such a
removal of metrics was only done for presentation purposes,
considering the high number of metrics taken into account
in our study. Finally, we computed the Kendall correlation
between each of the remaining 74 metrics and PBU, TNPU,
AU, and TAU, to verify whether some of them are able to
capture the (actual and perceived) understandability of code.

C. Replication Package

All the data used in our study is publicly available [31]. We
provide the research community with our dataset reporting
the (perceived and actual) understandability achieved by the
46 participants, hoping that the availability of such a dataset
will help in fostering research on the definition of a metric to
automatically assess code understandability.

V. EMPIRICAL STUDY RESULTS

Fig. 1 provides information about the participants involved
in our study. Most of them (∼ 70%) are bachelor’s students—
mixed in terms of years of programming experience. The
sample of participants also included six master’s students,
three Ph.D. students, and five professional developers.

Fig. 2 reports a heat-map showing the Kendall’s τ between
each metric and each understandability variable. We only show
in Fig. 2 correlations having |τ | > 0.1. As it is evident by
looking at Fig. 2, very few metrics have a correlation with
understandability variables higher than |0.1|. Specifically
nine metrics have a weak correlation with PBU, 10 with
TNPU, 8 with AU and 16 with TAU. 50 out of the 74 metrics
taken into account show no correlation at all. In the following,
we discuss the observed correlations by understandability
metric. However, it must always be kept in mind that these are
all weak correlations and, as such, do not allow for making

2Some metrics cannot be computed in some cases. For example, “Area of
comments/literals” cannot be computed if the method does not contain literals.
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Fig. 1. Participants to the study

any strong claims about the ability of these correlated metrics
to act as proxies for code understandability.

A. Perceived Binary Understandability (PBU)

The metric which has the highest correlation with PBU is
“Max line length” (τ ≈ −0.17), one of the metrics introduced
by Buse and Weimer [10] for readability prediction. Note that
Buse and Weimer also found that such a metric is the most
important one for readability prediction [10]. Therefore, this
is a further confirmation of the fact that, generally, developers
tend to perceive code with long lines as less pleasant. We also
found that there is a low correlation between PEspec and PBU:
developers with more experience in the specific programming
language tend to have a slightly higher confidence and they
tend to perceive snippets of code as understandable more
frequently than developers with less experience. There is also
a low correlation between PBU and AIDQmin: if the internal
APIs are well documented, developers tend to answer that they
understood the snippet slightly more frequently.

B. Time Needed for Perceived Understandability (TNPU)

The time needed to answer “I understood the snippet” is
(weakly) correlated with the programming experience, both
PEgen (τ ≈ 0.16), and PEspec (τ ≈ 0.15). Surprisingly, the
correlation is positive: the higher the experience, the higher the
time needed to complete the comprehension step (and click
the button “I understood the snippet”). This result seems to
suggest that experienced developers tend to take more time
to understand the snippets, while less experienced developers
tend to complete the comprehension process more quickly.
However, it is worth remembering that TNPU assesses the
time needed for the perceived understandability, and not the
actual one (TAU).

C. Actual Understandability (AU)

The metric that has the highest correlation with AU is the
average Textual Coherence of the snippet (τ ≈ −0.16). The
fact that the correlation is negative is surprising, because we
expected a higher Textual Coherence to imply a higher under-
standability. Other examples of metrics correlated with AU are
Number of parameters and DFT of conditionals (τ ≈ −0.15),
indicating that higher complexity reduces understandability.
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Fig. 2. Heat-map of the correlation among metrics and understandability proxies

D. Timed Actual Understandability (TAU)
The metric with the highest correlation with TAU is DFT

of conditionals (τ ≈ −0.18). Again, high complexity reduces
the understandability. It should be noticed that for TAU, i.e.,
actual understandability, we do not observe any correlation
with the programming experience.

E. Discussion
Given the large and diverse set of metrics considered in

our study, we expected to observe some form of correlation
allowing us to start designing an understandability metric/-
model. However, what we obtained is a clear and bold negative
result: none of the investigated metrics show a significant
correlation with the snippets’ understandability.

An important implication of this finding is that readability
and complexity metrics are not correlated with understand-
ability, which is a result deserving additional empirical inves-
tigations. For instance, the snippet in Fig. 3 from Weka was
understood by all the participants who evaluated such a snippet
during the study (i.e., mean PBU = 1). Note also that the mean
TAU = 0.72, i.e., the participants answered correctly two
out of three the verification questions, on average. However,
the snippet is considered as unreadable (0.14) when using the
readability model proposed by Scalabrino et al. [14].

Another metric that has no correlation with understand-
ability is LOC. Even if in our study we considered snippets
with a small variation of LOCs (maximum 40), it would have



private void addButtons () {
JButton okBut = new JButton("OK");
JButton cancelBut = new JButton("Cancel");

JPanel butHolder = new JPanel ();
butHolder.setLayout(new GridLayout(1, 2));
butHolder.add(okBut);
butHolder.add(cancelBut);
add(butHolder , BorderLayout.SOUTH);

okBut.addActionListener(new ActionListener () {
@Override
public void actionPerformed(ActionEvent e) {

if (m_modifyListener != null) {
m_modifyListener.setModifiedStatus(

ClassifierPerformanceEvaluatorCustomizer.this , true);
}

if (m_evaluationMetrics.size() > 0) {
StringBuilder b = new StringBuilder ();
for (String s : m_evaluationMetrics) {

b.append(s).append(",");
}
String newList = b.substring(0, b.length () - 1);
m_cpe.setEvaluationMetricsToOutput(newList);

}
if (m_parent != null) {

m_parent.dispose ();
}

}
});

cancelBut.addActionListener(new ActionListener () {
@Override
public void actionPerformed(ActionEvent e) {

customizerClosing ();
if (m_parent != null) {

m_parent.dispose ();
}

}
});

}

Fig. 3. Example of understandable snippet with low readability

been reasonable to expect at least a small correlation with
understandability.

Almost all of the metrics that we introduced in this study to
capture aspects of code reasonably related to understandability
do not correlate with any of the considered proxies. The only
exception is AIDQmin (API Internal Documentation Quality).
Indeed, such a metric has a low correlation with both PBU
and TAU. This result does not completely exclude the fact that
external documentation, quality of identifiers and popularity of
external APIs could play a role in the automatic assessment of
code understandability, but it underlines that designing metrics
able to capture such an aspect is far from trivial and represents
a big challenge for the research community.

Finally, we should not exclude the possibility that code
understandability is simply too subjective to be captured by
any metric. However, the research community has been able
to successfully define proxies for other highly subjective code
properties in the past, such as code readability. For this reason,
we believe that more research targeting the automatic assess-
ment of code understandability still represents an important
and valuable research direction.

VI. THREATS TO VALIDITY

Threats to construct validity, concerning the relation
between theory and observation, are mainly due to the mea-
surements we performed, both in terms of the 121 metrics
that we studied as well as when defining the four independent
variables for the understandability level. Concerning the 121

metrics, we tested our implementation and, when needed (e.g.,
for the IMSQ metric during the identifiers splitting/expan-
sion), relied on manual intervention to ensure the correctness
of the computed metrics. As for the independent variables,
we tried to capture both the perceived and the actual code
understandability. However, different results might be achieved
by exploiting different variables.

Threats to internal validity concern external factors we
did not consider that could affect the variables and the rela-
tions being investigated. Since two of the understandability
proxies are time-related (i.e., they are based on the time
participants spent while understanding the code), it is possible
that some participants were interrupted by external events
while performing the comprehension task. For this reason,
we excluded outliers (i.e., participants requiring more than
Q3+(2.5×IQR) seconds to understand a code snippet, where
Q3 is the third quartile and IQR is the Inter Quartile Range).

Threats to conclusion validity concern the relation be-
tween the treatment and the outcome. Although this is mainly
an observational study, wherever possible we used an appro-
priate support of statistical procedures.

Threats to external validity concern the generalizability
of our findings. Our study has been performed on a large,
but limited, set of metrics and by involving 46 participants
comprehending a subset of 50 methods extracted from 10
Java systems. Clearly, our findings hold for the considered
population of participants and for Java code. Larger studies
possibly involving more participants and code snippets written
in other languages should be performed to corroborate or
contradict our results.

VII. CONCLUSION AND FUTURE WORK

We presented an empirical study investigating the correla-
tion between code understandability and 121 metrics related
to the code itself, to the documentation available for it, and
to the developer understanding it. We asked 46 developers
to understand 50 Java snippets, and we gathered a total of
324 evaluations. We assessed the perceived and actual partic-
ipants’ understanding for each snippet they inspected and the
time they needed for the comprehension process. Our results
demonstrate that, in most of the cases, there is no correlation
between the considered metrics and code understandability.
In the few cases where we observed a correlation, its mag-
nitude is very small. The most important (and surprising)
conclusions of our study are that (i) there is no correlation
between understandability and readability, and (ii) metrics
generally used for effort estimation and commonly associated
with understandability, such as cyclomatic complexity, actually
have low or no correlation with understandability.

Our study lays the foundations for future research on new
metrics actually able to capture facets of code understandabil-
ity. For this reason, we publicly release our dataset to enable
the research community to investigate this direction further.
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