
University of Waterloo, ECE, Technical Report No. 2008-08

Matthew Stephan · Michał Antkiewicz

Ecore.fmp
A tool for editing and instantiating class models as feature models

Version 1, last update: May 30, 2008

Abstract Ecore Feature Modeling Plug-in (Ecore.fmp) is
a tool for editing and instantiating class models as feature
models. The tool interprets a class model as a feature model
and an object model as a feature configuration, thus expos-
ing the variability aspect of class models. Furthermore, the
tool supports instantaneous synchronization between class
models and feature models so that the changes made to one
model are propagated to the other model. In this report, we
describe a bi-directional mapping between class and object
models to feature models and configurations that is needed
for synchronization. We argue that both class modeling and
cardinality-based feature modeling have similar expressive
power and we discuss some issues related to the semantic
mismatch between the two notations.

Keywords class modeling · cardinality-based feature
modeling · Ecore · configuration · instantiation · variability

1 Introduction

Many class modeling tools, such as MagicDraw [13], Mi-
crosoft Visio [12], and Rational Software Modeler [10], em-
phasize a graph-like view in which classes are represented
as nodes and relationships among classes are represented
as edges. While this default graph-like view is sufficient for
general modeling, it does not offer specialized views of the
class model because none of the relationships among classes
are dominant. For example, choosing inheritance as a dom-
inant relationship and illustrating an inheritance hierarchy
requires manual rearrangement of the classes. Also, the vari-
ability aspect of the class model is not easily visible, that is,
it is not immediately apparent which classes must be or may
optionally be instantiated and which attributes must be or
may optionally be set.

Matthew Stephan
University of Waterloo E-mail: mdstepha@uwaterloo.ca

Michał Antkiewicz
University of Waterloo E-mail: mantkiew@uwaterloo.ca

Feature modeling is a technique and a notation special-
ized for variability modeling. A feature model consists of a
hierarchy of features that are properties of their parent fea-
tures. Feature modeling supports variability modeling by of-
fering constructs such as optional features and alternative
(XOR) feature groups.

In this report, we focus on two concrete notations for
class modeling and feature modeling: Ecore [2] and cardina-
lity-based feature modeling [8], respectively. Ecore is a sim-
ple class modeling notation offering constructs such as pack-
ages, classes, attributes, references, and annotations. Cardina-
lity-based feature modeling offers constructs such as fea-
tures, feature attributes, and feature groups. In cardinality-
based feature modeling, features and feature groups have a
cardinality that specifies the kind of a feature or a feature
group. For example, a feature with the cardinality [0..1] is
an optional feature and a feature group with the cardinality
[1..1] is an XOR feature group. Semantically, a class model
describes a set of valid object models where the objects are
instances of the classes. Similarly, a feature model describes
a set of valid feature configurations that contain instances of
features from the model. We refer to the creation of object
models for a given class model as instantiation. We refer
to the creation of a feature configuration for a given feature
model as configuration.

In this report, we propose an approach to viewing, edit-
ing, and instantiating class models as feature models. We im-
plemented the approach in a feature modeling and configu-
ration tool called Ecore.fmp (Ecore Feature Modeling Plug-
in). Ecore.fmp consists of two Eclipse views: feature mod-
eling view, for viewing and editing a class model expressed
in Ecore as a feature model, and feature configuration view,
for instantiating an object model using feature configuration.
Users of Ecore.fmp can modify their class models in both
the default Ecore editor and the feature modeling view si-
multaneously and independently. Similarly, instantiation of
class models can be accomplished through the Ecore object
model editor or the feature configuration view. It is impor-
tant to note that a graphical editor for Ecore class models
that uses a standard graph-like notation is also available and
can be used in conjuncion with Ecore.fmp.



2 Matthew Stephan, Michał Antkiewicz

Ecore is the metamodel that every class model conforms
to. In order to facilitate synchronization between a class model
and a feature model as well as between an object model
and a feature configuration, we defined a specialized meta-
model for feature models and configurations. The special-
ized metamodel, called Ecore.fm, has references to Ecore
model elements which represent feature model and configu-
ration elements. In this technical report we present the meta-
model for feature models and configurations as well as a
bi-directional mapping between that metamodel and Ecore.
The bi-directional mapping is implemented in Ecore.fmp in
the form of operations on feature models or configurations
that immediately modify Ecore models accordingly. Anal-
ogously, modifications on Ecore models are interpreted as
modifications on feature models or configurations.

Furthermore, we discuss some issues related to the se-
mantic mismatch between feature models and class models.
Information on the design and implementation of the current
prototype is also provided. The report gives enough back-
ground information on class modeling and feature modeling
such that readers with a minimal knowledge of both will be
able to understand the contents of this report. The report con-
cludes with a discussion of related work and possible future
work in this direction.

2 Ecore

Ecore is a class modeling notation equivalent to the essen-
tial subset of the Meta-Object Facility (MOF), the Essential
MOF. MOF is an Object Management Group (OMG) stan-
dard for expressing metamodels of modeling languages such
as UML. Its use is quite prevalent in industry today, coming
in three different variants, Complete, Semantic, and Essen-
tial MOF [3].

Ecore is a part of the Eclipse Modeling Framework (EMF),
a framework that provides a practical foundation for build-
ing modeling tools. When using EMF, users typically first
create a metamodel for their domain in the form of an Ecore
class model. Next, the users may use a code generator that
generates an implementation of the metamodel or they can
utilize the metamodel using reflection. The code generator
can also create a specialized graphical tree editor for creat-
ing and editing object models for the given metamodel.

Analogously to MOF, which is itself defined using MOF,
Ecore is also defined using Ecore, that is, the metamodel
of Ecore is also a class model that conforms to Ecore. A
fragment of the simplified metamodel of Ecore is presented
in Figure 1.

Every class model conforming to Ecore consists of an in-
stance of the class EPackage (package), which can contain
instances of the subclasses the class EClassifier: EClass
(classes), EDataType (primitive and user defined types), and
EEnum (enumerations). Instances of the class EClass con-
tain instances of the subclasses of EStructuralFeature:
EAttribute (attributes) and EReference (references). In-
stances of the class EReference point to instances of the

class EClass through the eReferenceType reference. The
attribute containment of the class EReference indicates
whether the reference is a containment reference. Ecore, sim-
ilarly to Essential MOF, also supports a tagging mechanism
which allows annotating each class model element with a set
of key-value pairs. In Ecore, instances of the class EModel-
Element can contain many instances of the class EAnnota-
tion, which, in turn, has a String to String map that repre-
sents key to value pairs. The complete metamodel of Ecore
can be found at [1].

The Ecore metamodel shown in Figure 1 is also an exam-
ple class model that conforms to Ecore. The class model is
shown in a standard UML-like notation, in which classes (in-
stances of the EClass class) are shown as boxes, attributes
(instances of the EAttribute class) are listed inside classes,
and references (instances of the EReference class) are shown
as arrows. Note that the inheritance arrows link classes with
the values of these classes’ eSuperTypes reference.

3 Class Modeling vs. Feature Modeling

In object-oriented analysis and design, class modeling plays
an important role as it allows decomposing a software sys-
tem into classes, assigning responsibilities to those classes,
and modeling various kinds of relationships among the classes.

Feature modeling, on the other hand, emphasises mod-
eling of the system in terms of its properties, that is, the
system’s features. In feature modeling, the system is decom-
posed into a hierarchy of features that directly or indirectly
describe it. Feature modeling has its roots in domain analy-
sis [11], where it is used for characterizing domain concepts
by their features. More recently, feature modeling is used
in modeling software product lines thanks to its support for
variability modeling.

However, despite those different uses of class modeling
and feature modeling, both notations have very similar ex-
pressive power. In fact, cardinality-based feature modeling
with inheritance and reference attributes is equivalent to the
part of class modeling for structural modeling, which we
show in this technical report.

Figure 2 shows a feature model that represents the class
model from Figure 1. A feature hierarchy is rendered as
a tree in which subfeatures are further right. Table 1 sum-
marizes the cardinality-based feature modeling notation we
use in this report. The feature EPackage is a root feature
and corresponds to a class that has been designated as a
root. Root features are also classes that are not contained
through any containment reference. The feature EClass cor-
responds to a containment reference of the class EPackage,
which contains instances of the class EClass. Similarly, the
feature EStructuralFeature corresponds to the contain-
ment reference EStructuralFeature of the class EClass.
The features EAttribute and EReference correspond to
the concrete subclasses of the class EStructuralFeature
that can be instantiated. Furthermore, the cardinalities of
the features correspond to multiplicities of references and



Ecore.fmp 3

Fig. 1 A fragment of the metamodel of Ecore

Table 1 Cardinality-based feature modeling notation

icon feature model or configuration element

package

root feature

optional feature [0..1]

mandatory feature [1..1]

optional multiple feature [0..*]

[0..m] optional multiple feature [0..m]

mandatory multiple feature [1..*]

[n..m] mandatory multiple feature [n..m], n > 0

inheritance

feature group <1-1> (XOR)

<n..m> feature group <n..m>

grouped feature [0..1]

selected optional feature

missing mandatory feature

missing mandatory multiple feature

attributes. For example, the feature eReferenceType be-
longing to feature EReference is a mandatory feature with
cardinality [1..1] (indicated by a filled circle) because the
multiplicity of the attribute eReferenceType is [1..1]. Ex-
ceptions to this rule are boolean attributes which are inter-
preted as optional features (e.g., containment belonging
to EReference), in which case, the value true of the at-
tribute indicates the presence of the feature. Features can
correspond to multiple elements from the class model, for
example, the feature EClass belonging to EPackage corre-
sponds to both the containment reference eClasses and the
class EClass. Also, elements from the class model can cor-
respond to multiple features, e.g., if a certain class is the type
of multiple containment references.

In this report, we define the bi-directional mapping be-
tween class models and feature models that can be used for
interpreting class models as feature models and vice versa.
First, we need to define a metamodel for representing feature
models and configurations: Ecore.fm.

4 Ecore.fm: a Metamodel of Feature Models and
Configurations

The Ecore.fmp is built upon an Ecore model itself in order to
utilize the capabilities provided in EMF, such as code gen-
eration and validation but also to support direct references
from feature model elements to their corresponding Ecore



4 Matthew Stephan, Michał Antkiewicz

Table 3 Elements within Ecore FMP Node Class

Element Name Description

min Attribute that represents the lower bound of the cardinality of the node. There must be at least this many
instances of what this node represents in a correct feature configuration.

max
Attribute that represents the upper bound of the cardinality of the node. There may be at most this many
instances of what this node represents in a correct feature configuration. Similarly to a convention in Ecore, the
value -1 indicates an infinite (*) upper bound.

children Reference that containes the set of children nodes of the given node in a feature model and configuration.
ecoreClass Reference that points at a class in an Ecore model that represents the given node. This reference must be set.

ecoreStructuralFeature Reference that points at a structural feature (an attribute or a reference) that represents the given node. This
reference may not be set.

ecoreContainingFeature Reference that points at a containment reference in an Ecore model that contains the class representing the
given node. It is used for mapping back to Ecore and other operations. This reference may not be set.

ecoreInstance Reference that points at an object (instance of an EClass) that represents the given node. This value is only used
in feature configuration when a feature has been selected. This reference may not be set.

Fig. 2 A fragment of the metamodel of Ecore as a feature model

model elements. Therefore, the Ecore.fm metamodel is a
class model expressed in Ecore. In the remainder of this re-
port, we use a more compact notation for class models: the
notation used by the default EMF Ecore class model editor.
We modify the notation by introducing new icons for ab-
stract classes and containment references in order to visually
distinguish them from concrete classes and non-containment
references. Table 2 summarizes the notation used for Ecore
class models.

Figure 3 shows the Ecore.fm metamodel. Node, Feature,
and FeatureGroup are classes; FeatureRepresentation

Table 2 Ecore class modeling notation

icon Ecore class model element

package

abstract class

concrete class

inheritance

attribute

reference

containment reference

, mandatory multiplicities

, optional multiplicities

enumeration

enumeration literal

annotation

annotation detail (key-value pair)

and GroupRepresentation are enumerations; min, max, and
representation are attributes; children is a containment
reference; and ecore* are non-containment references. The
basis for the metamodel is the class Node, which is an ab-
stract class that represents any entry in either a feature model
or a feature configuration view. The class Node contains other
nodes throught the reference children. The class Feature
is a subclass of Node and represents a solitary or a grouped
feature within a feature model. Analogously, the class Fea-
tureGroup, a subclass of Node, represents a feature group.
The only notable difference between features and feature
groups, with respect to the metamodel, is the enumeration at-
tribute representation. The enumeration FeatureRepre-
sentation has five literals, each describing a combination
of class model elements a feature corresponds to. The enu-
meration GroupRepresentation has two literals describ-
ing the type of the feature group. Table 3 provides a brief
description of the attributes and references of the class Node.



Ecore.fmp 5

Fig. 3 Ecore.fmp Meta Model

The following subsections we describe each direction
of the bidirectional mapping between Ecore and Ecore.fm
metamodels, as outlined in Figure 4. The class to feature di-

Fig. 4 Mapping Between Class Model and Feature Model

rection covers the mapping of Ecore class and object model
elements into feature model and configuration elements, re-
spectively. The other direction, feature to class, is the inverse
mapping. This two-way mapping is necessary for being able
to propagate changes made in one model to the other one and
thus maintain consistency between the models at all times.

4.1 Class to Feature Mapping

The class to feature mapping involves interpreting an Ecore
class model and rendering it as a feature model that is se-
mantically equivalent. Ecore elements such as classes, at-
tributes, and non-containment references are represented as
features and annotated classes and containment references
to classes involved in inheritance are represented as feature
groups.

The interpretation of a class model as a feature model
begins by determining root features. Root features are rep-

resented as classes that are not directly or indirectly con-
tained (referenced to through a containment reference) by
other classes. A class is indirectly contained if any of its
superclasses is contained. In the case of cyclic containment
whereby each class is contained, a root feature can also be
manually specified by annotating a class with the annotation
root. Specifically, an EAnnotation that has its attribute
source set to root must be added to the class. If all classes
are contained and none of them is specified as a root, the
resulting feature model is empty.

For each root feature, the children of the root feature are
then added based on the structural features of the classes
that represent the root features. The structural features are
interpreted as features or feature groups and the values of
the attribute representation of the node are set accord-
ingly. First, it is ascertained whether the node is a solitary or
a grouped feature by looking at the nature of the structural
feature. Table 4 presents the cases in which a node is a soli-
tary feature. Feature groups are created for an Ecore class
that is annotated with featureGroup or for a containment
reference with a finite upper bound that points to an Ecore
class that has subclasses. We elborate on feature groups in
Section 6.3. Once the type of node is discovered, it must
be further classified into the appropriate feature or feature
group representations. Table 4 discusses the five types of
representation of features and the way they are identified.

For each feature that is of type Class, ClassAttribute,
or ClassReference, their children/subfeatures are realized
by iterating through the structural features of the correspond-
ing class that the feature represents the same way as dis-
cussed above for a root feature. This process continues until
there are no more children to discover, that is, all the features
have either no children or have children that are already ac-
counted for. In the case of cyclical containment, the infinite
recursion is terminated by presenting a containment refer-
ence as a feature with a reference attribute (e.g., the feature
eSubpackages in Fig. 2), which is not further expanded.

4.2 Feature to Class Mapping

The feature to class mapping is required in instances where
the user wants to modify the Ecore model by executing com-
mands via the feature model. Adding, removing, and mod-
ifying features in the feature model trigger the appropriate
transformations to be executed on the Ecore model. Table 5
discusses the mapping by providing a description and an
image for the feature model and the corresponding Ecore
model. For the purpose of this report, an atomic feature is a
feature with no children while a composite feature is a fea-
ture with one or more children. These cases form the ba-
sis of the feature to Ecore mapping. Cardinality of attributes
and references are handled by obtaining the lower and upper
bounds in the feature model and using them when construct-
ing the Ecore attribute or references.



6 Matthew Stephan, Michał Antkiewicz

Table 4 Feature Types and Essential Characteristics

Feature Repres. Essential Characteristics Description

Class

Is either a root feature or an Ecore class that is contained
via an Ecore containment reference. The Ecore class must
not own a structural feature with the same name (case in-
sensitive) as the class.

Represents a standard class that does not have an identify-
ing / special attribute or reference.

Attribute Is an Ecore Attribute structural feature that is contained by
a class. Represents an attribute belonging to a class.

Reference

Is typically a non-containment reference to another Ecore
class. In some instances, it may also represent a reference
to a contained class that is contained higher in the feature’s
hierarchy (cyclic containment).

Represents a reference to a class that is not contained. In
case of cyclic containment, this represents a reference to a
contained class whose contents can not be shown because
it would continue on indefinitely. In both cases, children
should not be shown.

Class Attribute

Is a contained Ecore class that owns an Ecore attribute as
one of its structural features that has the same name (case
insensitive) as the class. For example, Class ”Person” that
has an attribute named ”person”.

This is a special type of Class feature that has a defining
attribute. It can be thought of as a typed feature that has
children.

Class Reference

Is a contained Ecore class that owns an EReference as one
of its structural features that has the same name (case in-
sensitive) as the class. For example, Class ”Animal” that
has an reference named ”animal”.

This is a special type of Class feature that has a defining
reference.

Table 5 Feature to Ecore Mapping

Description Feature Model Ecore Representation
A Root Feature with no type is repre-
sented as a standard class in Ecore.

An atomic feature that has no type is rep-
resented as an EBoolean.

An atomic feature that has a primitive
type is represented as an Ecore Attribute
with the corresponding Ecore type.

An atomic feature that has a type that is
referring to a (non-primitive) feature is
represented as an Ecore reference.

A composite feature that has no type is
represented as a standard Ecore class.

A composite feature that has a primitive
type associated with it is represented as a
feature of type Class Attribute. Thus, it is
given an attribute with the same name as
the class that has a 1..1 cardinality con-
straint.

A composite feature that has a reference
to a non-primitive type in the feature
model associated with it is represented as
a feature of type Class Reference. Thus,
it is given a reference with the same name
as the class that has a 1..1 cardinality con-
straint.



Ecore.fmp 7

5 Ecore.fmp Feature Configuration

Feature modeling corresponds to class modeling, that is, a
feature model corresponds to a class model. A given fea-
ture model describes a set of valid feature configurations.
Analogously, a class model describes a set of valid object
models. When a feature is present in a feature configuration,
it means that the object of the corresponding class must be
present in the object model and the value of the correspond-
ing attribute or reference must be set for the corresponding
object. Similarly, features corresponding to existing objects
and values of attributes and references in an object model
must be present in the feature configuration.

Just as the feature modeling view of Ecore.fmp allows
for simultaneous editing of the feature model and the class
model, the feature configuration view allows for simultane-
ous editing of the feature configuration and the object model.
The feature configuration functionality of the plug-in also
uses the Ecore.fm metamodel described in Section 4; how-
ever, feature configurations are presented differently from
feature models. Each element in a feature configuration has
children that are comprised of elements that correspond to
existing elements in the object model as well as elements
from the feature model for which elements in the object
model have not been created yet. Displaying elements for
non-existing object model elements allows the user to see
which configuration steps are possible at any given time dur-
ing configuration and is the usual way of performing config-
uration. Another difference between feature modeling and
feature configuration is related to abstract and prohibited
(with cardinality [0..0]) features, which are not shown in
feature configuration because it is incorrect for a user to be
able to instantiate such elements. However, if an instance of
such an element exists, it will be shown as an error. Fur-
thermore, all features inherited from abstract features are
shown as children of the features that inherit them because
the user must be able to configure those features (otherwise
they would not be visible because abstract features are not
shown). Another important difference is that features for non-
existing object model element are shown only if the user can
actually configure them. These features that are able to be
configured can be considered prototypes, as done in [4]. Pro-
totypes are a feature from the feature model for which object
model elements do not exist but are able to be cloned/created.
For example, if an upper bound of a multiple feature has
been reached, the prototype can no longer be cloned and
therefore it is not shown in a feature configuration.

To summarize, the algorithm for determining the chil-
dren for a node in a feature configuration first displays ele-
ments from a feature model depicting all feasible prototypes
that can be created and then it displays children correspond-
ing to existing object model elements. After performing a
configuration step, the corresponding object model is mod-
ified using EMF reflection: objects are created for classes
and values are set for attributes and references. Reflection is
also used during the interpretation of the object model as a
feature configuration.

Lastly, images in feature configuration vary depending
on the cardinalities of the feature and their parents. Simi-
larly to fmp [4], optional features are represented and mod-
ified through a check box and multiple features’ prototypes
can be cloned by double clicking. For features with repre-
sentation type Attribute, Reference, ClassAttribute,
and ClassReference, instantiation triggers a dialog that re-
quests the appropriate value (primitive value for attributes
and EObject for references) from the user. When cloning a
feature with representation Class belonging to a contain-
ment reference, a new EObject is created with the feature’s
defining attributes/references specified by the user if the fea-
ture is represented as ClassReference or ClassAttribute.
When cloning a feature with representation Class that is re-
ferred to by a non-containment reference, the user is required
to select a preexisting reference within the model.

Figure 5 provides an example of a feature configuration
using Ecore.fmp. B is an optional feature that is instantiated;
C is a mandatory feature that is not instantiated, hence the
red circle indicating an error; D is a [0..*] prototype that has
one instance; E is a [1..*] prototype that has no instances,
thus it has a red circle indicting an error; F is a [0..5] proto-
type with an instance; and G is a [2..5] prototype with less
than 2 instances, therefore a red circle is shown indicating
an error. At this point in the configuration, the optional fea-
ture B can be unchecked to remove the instance and features
C-G can be cloned by double clicking on the their respective
icons.

Fig. 5 Ecore.fmp Feature Configuration Example

6 Advanced Concepts

The following sections address some advanced issues that
arise due to the semantic mismatch between class diagrams
and feature models. Thorough investigation of the semantic
mismatch remains future work.



8 Matthew Stephan, Michał Antkiewicz

Fig. 6 Cyclic Containment Examples

6.1 Cyclic Containment

Cyclic containment refers to the situation where a feature
contains, at any level in its hierarchy, itself through either
direct or indirect containment. Figure 6 below shows both
of these cases on the left in Ecore and the way they are in-
terpreted as a feature models on the right. In the first case,
R contains a containment reference to itself rec. In the sec-
ond case the feature A, which is contained by the feature
AContainer, contains the feature B that has the containment
reference C back to A. In both cases the standard interpreta-
tion algorithm would execute in an infinite loop because of
the cycle that forms when retrieving the children of the el-
ements. To prevent infinite recursion, cyclic containment is
detected by traversing the containment hierarchy upwards.
Once detected, rather than adding a feature with representa-
tion Class, a feature with representation Reference, which
does not contain any children, is added in the same way it
is done for a non-containment reference thus ending the re-
cursion at the first point it is detected. In the case of feature
configuration, the upward branch traversal is stopped when
an instance is reached. If none of the elements in the cyclic
containment are a root feature, then the user is required to
annotate the desired EClass that should be the root feature
using the annotation root as discussed earlier.

6.2 Feature and Class Inheritance

The concept of class subtyping and feature modeling refers
to features that represent a class with one or more sub types.
In instances where a feature has a non-containment refer-
ence to such a class, the class and all its subclasses are shown
as explicit references with the cardinality being inherited
from the super class. Figure 7 shows both the Ecore repre-
sentation and corresponding feature model of a class subtyp-
ing example with a containment reference. For containment
references, there are two cases. One case, as shown as fea-
ture and Class A in the figure, is a derived feature group,
which occurs when the reference has a defined upper bound.
This will be explained below in more detail. The other case,
element B in the figure, is a containment reference that has a

Fig. 7 Class Subtyping with a Containment Reference

* (unlimited) upper bound. This case is handled in the same
way as non-containment reference due to the fact that it is no
longer a true feature group, see below, and an infinite num-
ber can be replicated with no restrictions. Using the feature
model to add a supertype transforms an attribute feature or
reference feature into a Class Attribute or Class Reference
type feature, respectively, before adding the supertype.

6.3 Feature Group - Derived and Annotated

As defined in [8], feature groups exist when a feature rep-
resents a choice among the elements within the group. In
Figure 7, E, F, and G are the elements of the Feature Group
belonging to A. This means A has a choice of selecting ei-
ther no elements or one of E, F, or G.

Regarding Ecore.fmp, there are two type of feature groups
that are interpreted from the Ecore model: derived feature
groups and annotated feature groups. Derived feature groups
are containment references with a finite upper bound that re-
fer to a class that has one or more sub types. The reasoning
behind this, as alluded to earlier, is that any time there is a
reference to a class such as this, an implicit choice exists re-
garding what specific instance to select. This feature group
is entitled derived because the Ecore.fmp determines the ex-
istence of this type of feature group by looking for the ref-
erences described during the calculation of a Class feature’s
children.

An annotated feature group, on the other hand, are classes
that are annotated with the annotation featureGroup or by
using the feature model command Add Feature Group. Fig-
ure 8 provides an example of a class, R, annotated with
featureGroup. The class R has a reference to the class A
and three boolean attributes B, C, D. The annotation fea-
tureGroup, with lowerbound set to 1 and upperbound set
to 3, specifies that a correct instance of R will have at least 1
and at most 3 structural features present (non-null or true).
Using annoation featureGroup is necessary because Ecore
does not provide an appropriate mechanism for expressing
the group constraint. An alternative way of modeling a fea-
ture group constraint is by using a constraint language such
as Object Constraint Language (OCL) [14].



Ecore.fmp 9

Fig. 8 Ecore Model Annotated with featureGroup

7 Prototype Implementation

Ecore.fmp is implemented as two Eclipse plug-ins and it
uses Eclipse Modeling Framework (EMF). The first plug-
in, ca.uwaterloo.gsd.ecore.fm, contains the Ecore.fm
metamodel and its implementation, including feature model-
ing and configuration operations. This plug-in does not con-
tain any graphical components and is meant for those who
want to deal with the metamodel in isolation. The second
plug-in, ca.uwaterloo.gsd.ecore.fmp adds the feature
modeling and configuration views.

The feature modeling view works in conjunction with
any Ecore class model (designated with the .ecore exten-
sion) opened using the standard Ecore editor. It displays the
class model as a feature model and it supports feature model
editing through feature addition, removal, and modification
commands as well as similar commands for feature groups.
These commands are operated on the feature model and are
reflected instantly in the Ecore model. This view can be acti-
vated by right clicking on any element within an Ecore editor
and selecting Show Feature Modeling View action.

The feature configuration view operates on any EObject
and allows configuration of the instances associated with it
and the children belonging to its hierarchy. Ecore provides a
sample reflective object model editor that operates on .xmi
object model files. The feature configuration view can be
activated from this model editor by right clicking on any el-
ement within it and selecting Show Configuration View ac-
tion. Once done, a feature configuration is shown that re-
flects the elements existing in the object model. Further-
more, commands can be performed in a similar fashion to
the feature configuration component from [4], allowing for
the addition, removal, and modification of instances. There
is also very basic model validation present such that miss-
ing mandatory instances or insufficient quantity of instances
are shown as red. For example, a reference of [1..1] or [1..*]
with no instances will show red and the user will know that
instances should be created in order to satisfy the cardinal-
ity constraints. An interesting side effect of this view is that
because Ecore class models are comprised of EObjects, the

feature configuration view can also be used to modify class
models.

8 Related Work

The FeaturePlugin [4] was used as a template for the Ecore-
.fmp . The Ecore.fmp uses many of the same notations and
display elements as the FeaturePlugin. The key difference
between that and the one described in this report is that the
FeaturePlugin focuses strictly on feature modelling in an
isolated context. That is, users are dealing with feature mod-
els and configurations as the only artifacts of interest. The
Ecore.fmp Plug-in allows modeling and configuration but
operates within the context of an Ecore model. As such,
given the existence of an Ecore file or an Ecore instance
file, the Ecore.fmp can accomplish the same tasks that the
FeaturePlugin can. Future work is to allow creation of an
Ecore file or Ecore instance file given a feature model or
configuration without a preexisting model. Other tools have
been released for feature modeling, such as CaptainFeature
[6] and Pure::Variants [9], but none support cardinalities.
Pure::Variants does support constraints and constraint-based
configuration, something that is future work for the Ecore.fmp.

Asikainen et al. propose an ontology for feature models,
called Forfamel, that attempts to acheive a unified concep-
tual foundation for feature modeling and configuration [5].
It synthesizes existing feature model definitions and tools
and provides extensions to enable easy reuse. The feature
modeling and configuration ontology used by the Ecore.fmp
is based more on the traditional (non-forfamel) definitions
discussed in [7,8]. In Ecore.fmp, entities in both a feature
model and configuration are termed and treated as features;
however, Forfamel distinguishes between the two and con-
siders them “instances of different meta-entities”. In Ecore.-
fmp, entities in feature models and configuration are distin-
guished by checking the value of the ecoreInstance refer-
ence: null indicates feature model, an object indicates con-
figuration. Forfamel also has features/subfeatures unaware
of their roles within the model, that is, features are unaware
if they are a grouped, solitary, or root feature. Ecore.fmp
requires that features have this knowledge in order to prop-
erly manage the bi-directional mapping and to render them
correctly within their respective views. Lastly, Forfamel ex-
cludes unbounded (infinite) cardinalities. Infinite and unboun-
ded cardinalities are used frequently in class modeling, so it
was necessary for the Ecore.fmp to incoporate them.

9 Future Work

At this point, the feature modeling and feature configuration
of the Ecore.fmp is dependent on an Ecore model. It would
be more convenient if a modeler could create a feature model
or a configuration of a model from scratch and then have the
corresponding Ecore file created automatically. This should
not be too onerous to implement because the mappings from



10 Matthew Stephan, Michał Antkiewicz

Feature model to Ecore are already defined. Following these
rules, the Ecore file could be generated and the developer
could then edit the Ecore model or continue editing the fea-
ture model.

A more involved addition to the plug-in is to support
constraints for modeling and configuration. This will likely
be accomplished in a similar way that Pure::Variants han-
dles it, specifically through a Prolog-based constraint solver.
It will need to enforce constraints between features and more
complex interaction constraints.

Another area of work to be considered is the idea of
model/feature interactions that can be facilitated via the plug-
in. This entails using preexisting work on merging and inter-
actions of feature models and/or Ecore models in order to
perform a number of interesting tasks such as model com-
parisons and model merging.

Lastly, the semantic mismatch discussed in Section 6 is
a very interesting problem and future work should be con-
ducted to investigate this more thoroughly.

References

1. Ecore metamodel. http://help.eclipse.org/help32/topic/org.ecli-
pse.emf.doc/references/javadoc/org/eclipse/emf/ecore/doc-
files/EcoreRelations.gif

2. Eclipse modeling framework project (emf) (2008).
http://www.eclipse.org/modeling/emf/

3. Omg’s metaobject facility (2008). http://www.omg.org/mof/
4. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: feature mod-

eling plug-in for eclipse. In: eclipse ’04: Proceedings of
the 2004 OOPSLA workshop on eclipse technology eXchange,
pp. 67–72. ACM, New York, NY, USA (2004). DOI
http://doi.acm.org/10.1145/1066129.1066143

5. Asikainen, T., Mnnist, T., Soininen, T.: A unified conceptual foun-
dation for feature modelling. In: 10th International Software Prod-
uct Lines Conference (2006)

6. Bednasch, T., Endler, C., Lang, M.: Captainfeature (2004).
https://sourceforge.net/projects/captainfeature/

7. Czarnecki, K., Eisenecker, U.: Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley (2000)

8. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing
cardinality-based feature models and their specialization.
In: Software Process Improvement and Practice, special issue of
best papers from SPLC04, vol. 10, pp. 7 – 29 (2005)

9. pure-systems GmbH: Variant management with pure::consul.
Technical White Paper (2003). http://web.pure-systems.com

10. IBM: Rational software modeler (2008). http://www-
306.ibm.com/software/awdtools/modeler/swmodeler/

11. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-
oriented domain analysis (FODA) feasibility study. Tech. Rep.
CMU/SEI-90TR -21, Software Engineering Institute, Carnegie
Mellon University (1990)

12. Microsoft Corporation: Microsoft office visio 2007 prod-
uct overview (2008). http://office.microsoft.com/en-
us/visio/HA101656401033.aspx

13. No Magic Inc: MagicDraw (2008). http://www.magicdraw.com/
14. Object Management Group, Inc.: Ob-

ject constraint language (2008).
http://www.omg.org/technology/documents/formal/ocl.htm


